Combination Methodologies of Text Classifier: Design and Implementation

Rujiang Bai, Xiaoyue Wang
{"title":"Combination Methodologies of Text Classifier: Design and Implementation","authors":"Rujiang Bai, Xiaoyue Wang","doi":"10.1109/FSKD.2007.222","DOIUrl":null,"url":null,"abstract":"Support vector machines, one of the most population techniques for classification, have been widely used in many application areas. The kernel parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts classification accuracy .The objective of this work is to reduce the dimension of feature vectors, optimizing the parameters to improve the SVM classification accuracy and speed. We present rough set method for feature reduce and a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem. We tried Reuters 21578 using the proposed method. Experimental results indicate, compared with the traditional methods, our proposed method significantly improves the classification accuracy and has fewer input features for support vector machines.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support vector machines, one of the most population techniques for classification, have been widely used in many application areas. The kernel parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts classification accuracy .The objective of this work is to reduce the dimension of feature vectors, optimizing the parameters to improve the SVM classification accuracy and speed. We present rough set method for feature reduce and a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem. We tried Reuters 21578 using the proposed method. Experimental results indicate, compared with the traditional methods, our proposed method significantly improves the classification accuracy and has fewer input features for support vector machines.
文本分类器的组合方法:设计与实现
支持向量机作为最具种群性的分类技术之一,在许多应用领域得到了广泛的应用。在训练过程中,支持向量机的核参数设置影响分类精度。特征选择是影响分类精度的另一个因素,本文的目标是通过降低特征向量的维数,优化参数来提高支持向量机的分类精度和速度。为了解决这类问题,我们提出了粗糙集特征约简方法和遗传算法特征选择和参数优化方法。我们尝试了路透社21578使用提出的方法。实验结果表明,与传统方法相比,本文提出的方法显著提高了分类精度,并且减少了支持向量机的输入特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信