Muhammad Ihtisham Babar, Ali Abbas Kapadia, Waseeq Siddiqui
{"title":"Robust Non-Linear Dynamic Inversion Control System to Improve Stability of Large Aircraft in Crosswind","authors":"Muhammad Ihtisham Babar, Ali Abbas Kapadia, Waseeq Siddiqui","doi":"10.1109/ICASE54940.2021.9904279","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed description of a flight stability and control system, along with the original and improved lateral response of large aircraft in crosswind as experienced during landing. A robust state-dependent non-linear dynamic system is designed and used in the proposed approach to improve aircraft stability in crosswind disturbances. Furthermore, to demonstrate the effectiveness of the designed system, two large aircraft, the Boeing 747 and the Galaxy C-5, are used as a baseline, as both are widely used in the aviation industry. The response of the non-linear Dynamic Inversion is also demonstrated for varying crosswind behavior and magnitudes. Another benefit of the Non-Linear Dynamic Inversion control system is in the creation of an autopilot system which is achieved through non-zero state tracking for an aircraft. It is concluded that by incorporating the designed robust Non-Linear Dynamic Inversion, as a stability and control system for both these aircraft, an improved aircraft response and behavior of control surfaces can be obtained.","PeriodicalId":300328,"journal":{"name":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASE54940.2021.9904279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a detailed description of a flight stability and control system, along with the original and improved lateral response of large aircraft in crosswind as experienced during landing. A robust state-dependent non-linear dynamic system is designed and used in the proposed approach to improve aircraft stability in crosswind disturbances. Furthermore, to demonstrate the effectiveness of the designed system, two large aircraft, the Boeing 747 and the Galaxy C-5, are used as a baseline, as both are widely used in the aviation industry. The response of the non-linear Dynamic Inversion is also demonstrated for varying crosswind behavior and magnitudes. Another benefit of the Non-Linear Dynamic Inversion control system is in the creation of an autopilot system which is achieved through non-zero state tracking for an aircraft. It is concluded that by incorporating the designed robust Non-Linear Dynamic Inversion, as a stability and control system for both these aircraft, an improved aircraft response and behavior of control surfaces can be obtained.