{"title":"Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory","authors":"L. Giraitis","doi":"10.1214/AOS/1059655915","DOIUrl":null,"url":null,"abstract":"The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.","PeriodicalId":437927,"journal":{"name":"STICERD: Econometrics (EM) (Topic)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STICERD: Econometrics (EM) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOS/1059655915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate, and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order 1/√m (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.