State of Health Estimation of Lithium-ion Batteries Using Convolutional Neural Network with Impedance Nyquist Plots

Yichun Li, Mina Maleki, Shadi Banitaan, Ming-Jie Chen
{"title":"State of Health Estimation of Lithium-ion Batteries Using Convolutional Neural Network with Impedance Nyquist Plots","authors":"Yichun Li, Mina Maleki, Shadi Banitaan, Ming-Jie Chen","doi":"10.5220/0011672300003411","DOIUrl":null,"url":null,"abstract":": In order to maintain the Li-ion batteries in a safe operating state and to optimize their performance, a precise estimation of the state of health (SOH), which indicates the degradation level of the Li-ion batteries, has to be taken into consideration urgently. In this paper, we present a regression machine learning framework that combines a convolutional neural network (CNN) with the Nyquist plot of Electrochemical Impedance Spectroscopy (EIS) as features to estimate the SOH of Li-ion batteries with a considerable improvement in the accuracy of SOH estimation. The results indicate that the Nyquist plot based on EIS features provides more detailed information regarding battery aging than simple impedance values due to its ability to reflect impedance change over time. Furthermore, convolutional layers in the CNN model were more effective in extracting different levels of features and characterizing the degradation patterns of Li-ion batteries from EIS measurement data than using simple impedance values with a DNN model, as well as other traditional machine learning methods, such as Gaussian process regression (GPR) and support vector machine (SVM).","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011672300003411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: In order to maintain the Li-ion batteries in a safe operating state and to optimize their performance, a precise estimation of the state of health (SOH), which indicates the degradation level of the Li-ion batteries, has to be taken into consideration urgently. In this paper, we present a regression machine learning framework that combines a convolutional neural network (CNN) with the Nyquist plot of Electrochemical Impedance Spectroscopy (EIS) as features to estimate the SOH of Li-ion batteries with a considerable improvement in the accuracy of SOH estimation. The results indicate that the Nyquist plot based on EIS features provides more detailed information regarding battery aging than simple impedance values due to its ability to reflect impedance change over time. Furthermore, convolutional layers in the CNN model were more effective in extracting different levels of features and characterizing the degradation patterns of Li-ion batteries from EIS measurement data than using simple impedance values with a DNN model, as well as other traditional machine learning methods, such as Gaussian process regression (GPR) and support vector machine (SVM).
基于阻抗奈奎斯特图卷积神经网络的锂离子电池健康状态估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信