An Unknown Pattern Detection Method for Time Series Data Based on Convolutional Neural Network

J. Bao, Xinyi Li
{"title":"An Unknown Pattern Detection Method for Time Series Data Based on Convolutional Neural Network","authors":"J. Bao, Xinyi Li","doi":"10.1109/IICSPI48186.2019.9095913","DOIUrl":null,"url":null,"abstract":"Exploration on the time series data in unknown model pattern recognition has important research significance. This paper proposes an unknown pattern detection method for time-series data based on convolution neural network, which planifies the output results by transforming fully connection layer and softmax layer of the traditional convolutional neural network, and uses the coordinate point and Euclidean distance to determine whether the timing series data belongs to the known pattern or the unknown pattern. Experiments show that the method in this paper can effectively detect the time-series data of unknown patterns and has certain accuracy.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploration on the time series data in unknown model pattern recognition has important research significance. This paper proposes an unknown pattern detection method for time-series data based on convolution neural network, which planifies the output results by transforming fully connection layer and softmax layer of the traditional convolutional neural network, and uses the coordinate point and Euclidean distance to determine whether the timing series data belongs to the known pattern or the unknown pattern. Experiments show that the method in this paper can effectively detect the time-series data of unknown patterns and has certain accuracy.
基于卷积神经网络的时间序列数据未知模式检测方法
探索时间序列数据在未知模型模式识别中的应用具有重要的研究意义。本文提出了一种基于卷积神经网络的时间序列数据未知模式检测方法,通过对传统卷积神经网络的全连接层和softmax层进行变换,将输出结果进行放大,利用坐标点和欧氏距离来判断时序数据属于已知模式还是未知模式。实验表明,该方法能够有效地检测出未知模式的时间序列数据,并具有一定的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信