Visualising Clusters in High-Dimensional Data Sets by Intersecting Spheres

F. Hoppner, F. Klawonn
{"title":"Visualising Clusters in High-Dimensional Data Sets by Intersecting Spheres","authors":"F. Hoppner, F. Klawonn","doi":"10.1109/ISEFS.2006.251180","DOIUrl":null,"url":null,"abstract":"In this paper, we re-consider the problem of mapping a high-dimensional data set into a low-dimensional visualisation. We adopt the idea of multidimensional scaling but instead of projecting a high-dimensional point to a low-dimensional representation, we project a cluster in the high-dimensional space to a 3D-sphere. Rather than preserving distances from the high-dimensional space we aim at preserving the cluster interdependencies and try to recover them by the arrangement of the spheres. Using clusters and spheres rather than single data objects makes the method much more suitable for larger data sets. Our method can also be considered as a visual technique for cluster validity investigations. Strongly overlapping clusters or spheres in the visualisation are indicators for an unsuitable clustering result","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we re-consider the problem of mapping a high-dimensional data set into a low-dimensional visualisation. We adopt the idea of multidimensional scaling but instead of projecting a high-dimensional point to a low-dimensional representation, we project a cluster in the high-dimensional space to a 3D-sphere. Rather than preserving distances from the high-dimensional space we aim at preserving the cluster interdependencies and try to recover them by the arrangement of the spheres. Using clusters and spheres rather than single data objects makes the method much more suitable for larger data sets. Our method can also be considered as a visual technique for cluster validity investigations. Strongly overlapping clusters or spheres in the visualisation are indicators for an unsuitable clustering result
用相交球体可视化高维数据集中的聚类
在本文中,我们重新考虑了将高维数据集映射到低维可视化中的问题。我们采用了多维缩放的思想,但不是将高维点投影到低维表示中,而是将高维空间中的集群投影到3d球体中。我们的目标不是保持与高维空间的距离,而是保持星团的相互依赖关系,并试图通过球体的排列来恢复它们。使用集群和球体而不是单个数据对象使该方法更适合于更大的数据集。我们的方法也可以被认为是一种聚类效度调查的视觉技术。强烈重叠的集群或球体在可视化是一个不合适的集群结果的指标
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信