IR-FF-kNN: Image Retrieval Using Feature Fusion with k-Nearest Neighbour Classifier

K. Venkataravana Nayak, J. Arunalatha, K. Venugopal
{"title":"IR-FF-kNN: Image Retrieval Using Feature Fusion with k-Nearest Neighbour Classifier","authors":"K. Venkataravana Nayak, J. Arunalatha, K. Venugopal","doi":"10.1145/3456389.3456405","DOIUrl":null,"url":null,"abstract":"Presence of inconsistency in the visual appearance of image tends to degrade the retrieval process performance. Increasing image data across several domains encourages to explore visual information of image representation to simplify the interpretation and concentrate on discriminative features of images so as to use them for retrieving relevant images for increasing machine learning model performance. Thus, features fusion and k-Nearest Neighbours (IR-FF-kNN); an Image Retrieval framework is proposed to increase retrieval performance. The Histogram of oriented Gradients (HoG), Color Moments (CM) and Center Symmetric Local Binary Pattern (CSLBP) descriptors are used to obtain multiple features of images in the features extraction phase and in similarity computation phase, the kNN classifier is used. The proposed framework is tested on MIR Flickr dataset and provides mean average precision of 85% compared to the state-of-the-arts.","PeriodicalId":124603,"journal":{"name":"2021 Workshop on Algorithm and Big Data","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Workshop on Algorithm and Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456389.3456405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Presence of inconsistency in the visual appearance of image tends to degrade the retrieval process performance. Increasing image data across several domains encourages to explore visual information of image representation to simplify the interpretation and concentrate on discriminative features of images so as to use them for retrieving relevant images for increasing machine learning model performance. Thus, features fusion and k-Nearest Neighbours (IR-FF-kNN); an Image Retrieval framework is proposed to increase retrieval performance. The Histogram of oriented Gradients (HoG), Color Moments (CM) and Center Symmetric Local Binary Pattern (CSLBP) descriptors are used to obtain multiple features of images in the features extraction phase and in similarity computation phase, the kNN classifier is used. The proposed framework is tested on MIR Flickr dataset and provides mean average precision of 85% compared to the state-of-the-arts.
IR-FF-kNN:基于k-最近邻分类器特征融合的图像检索
图像视觉外观的不一致性往往会降低检索过程的性能。跨多个领域的图像数据的增加鼓励探索图像表示的视觉信息,以简化解释,并专注于图像的判别特征,以便使用它们检索相关图像,以提高机器学习模型的性能。因此,特征融合和k近邻(IR-FF-kNN);为了提高检索性能,提出了一种图像检索框架。特征提取阶段采用直方图定向梯度(HoG)、颜色矩(CM)和中心对称局部二值模式(CSLBP)描述符获取图像的多个特征,相似度计算阶段采用kNN分类器。提出的框架在MIR Flickr数据集上进行了测试,与最先进的技术相比,提供了85%的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信