Hierarchical band clustering for hyperspectral image analysis

H. Su, Peijun Du, Q. Du
{"title":"Hierarchical band clustering for hyperspectral image analysis","authors":"H. Su, Peijun Du, Q. Du","doi":"10.1109/PPRS.2012.6398316","DOIUrl":null,"url":null,"abstract":"Band clustering is applied to dimensionality reduction of hyperspectral imagery. The proposed method is based on a hierarchical clustering structure, which aims to group bands using an information or similarity measure. Specifically, the distance based on orthogonal projection divergence (OPD) is used as a criterion for clustering. Moreover, different from unsupervised clustering using all the pixels or supervised clustering requiring labeled pixels, the proposed semi-supervised band clustering needs class spectral signatures only. The experimental results show that the proposed algorithm can significantly outperform other existing methods with regard to pixel-based classification task.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Band clustering is applied to dimensionality reduction of hyperspectral imagery. The proposed method is based on a hierarchical clustering structure, which aims to group bands using an information or similarity measure. Specifically, the distance based on orthogonal projection divergence (OPD) is used as a criterion for clustering. Moreover, different from unsupervised clustering using all the pixels or supervised clustering requiring labeled pixels, the proposed semi-supervised band clustering needs class spectral signatures only. The experimental results show that the proposed algorithm can significantly outperform other existing methods with regard to pixel-based classification task.
用于高光谱图像分析的分层带聚类
将波段聚类应用于高光谱图像的降维。该方法基于分层聚类结构,目的是利用信息或相似性度量对波段进行分组。具体来说,基于正交投影散度(OPD)的距离被用作聚类的标准。此外,与使用所有像素的无监督聚类和需要标记像素的监督聚类不同,所提出的半监督带聚类只需要类光谱特征。实验结果表明,在基于像素的分类任务中,该算法明显优于现有的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信