Some Optimality Variations of Central Composite Designs

Lilian O. Ngonadi, Francis C. Eze
{"title":"Some Optimality Variations of Central Composite Designs","authors":"Lilian O. Ngonadi, Francis C. Eze","doi":"10.32861/ajams.54.32.42.","DOIUrl":null,"url":null,"abstract":"Some variations of central composite designs (CCD) under complete and partial replications of cube, axial and center points are studied using A, D and G optimality criteria. The results obtained suggest that complete replication of the cube, axial and center points are better than the partial replication of cube, axial and center points under the A and D optimality criteria studied while it varies under G optimality criterion. The partial replication of the cube, axial and center point for all the CCDs studied, the partial replicated cube point is D optimal but varies under A and G optimality criteria.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.54.32.42.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some variations of central composite designs (CCD) under complete and partial replications of cube, axial and center points are studied using A, D and G optimality criteria. The results obtained suggest that complete replication of the cube, axial and center points are better than the partial replication of cube, axial and center points under the A and D optimality criteria studied while it varies under G optimality criterion. The partial replication of the cube, axial and center point for all the CCDs studied, the partial replicated cube point is D optimal but varies under A and G optimality criteria.
中心复合设计的一些最优性变化
利用A、D和G最优准则研究了中心复合设计(CCD)在立方体点、轴点和中心点完全和部分重复条件下的一些变化。结果表明,在A和D最优性准则下,立方体、轴和中心点的完全复制优于立方体、轴和中心点的部分复制,而在G最优性准则下则有所不同。对于所研究的所有ccd的立方体、轴和中心点的部分复制,部分复制的立方体点是D最优的,但在A和G最优准则下有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信