Evolutionary multi-objective clustering with adaptive local search

Kazi Shah Nawaz Ripon, K. Glette, M. Høvin, J. Tørresen
{"title":"Evolutionary multi-objective clustering with adaptive local search","authors":"Kazi Shah Nawaz Ripon, K. Glette, M. Høvin, J. Tørresen","doi":"10.1109/ICCITECHN.2010.5723829","DOIUrl":null,"url":null,"abstract":"In many real-world applications, the accurate number of clusters in the data set may be unknown in advance. In addition, clustering criteria are usually high dimensional, nonlinear and multi-model functions and most existing clustering algorithms are only able to achieve a clustering solution that locally optimizes them. Therefore, a single clustering criterion sometimes fails to identify all clusters in a data set successfully. This paper presents a novel multi-objective evolutionary clustering algorithm based on adaptive local search that mitigates the above disadvantages of existing clustering algorithms. Unlike the conventional local search, the proposed adaptive local search scheme automatically determines whether local search is used in an evolutionary cycle or not. Experimental results on several artificial and real data sets demonstrate that the proposed algorithm can identify the accurate number of clusters in the data sets automatically and simultaneously achieves a high quality clustering solution. The superiority of the proposed algorithm over some single-objective clustering algorithms and existing multi-objective evolutionary clustering algorithms is also confirmed by the experimental results.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many real-world applications, the accurate number of clusters in the data set may be unknown in advance. In addition, clustering criteria are usually high dimensional, nonlinear and multi-model functions and most existing clustering algorithms are only able to achieve a clustering solution that locally optimizes them. Therefore, a single clustering criterion sometimes fails to identify all clusters in a data set successfully. This paper presents a novel multi-objective evolutionary clustering algorithm based on adaptive local search that mitigates the above disadvantages of existing clustering algorithms. Unlike the conventional local search, the proposed adaptive local search scheme automatically determines whether local search is used in an evolutionary cycle or not. Experimental results on several artificial and real data sets demonstrate that the proposed algorithm can identify the accurate number of clusters in the data sets automatically and simultaneously achieves a high quality clustering solution. The superiority of the proposed algorithm over some single-objective clustering algorithms and existing multi-objective evolutionary clustering algorithms is also confirmed by the experimental results.
基于自适应局部搜索的进化多目标聚类
在许多实际应用程序中,数据集中集群的准确数量可能是事先未知的。此外,聚类标准通常是高维、非线性和多模型的函数,现有的大多数聚类算法只能得到局部优化的聚类解。因此,单个聚类标准有时不能成功地识别数据集中的所有聚类。本文提出了一种基于自适应局部搜索的多目标进化聚类算法,克服了现有聚类算法的上述缺点。与传统的局部搜索不同,本文提出的自适应局部搜索方案能够自动判断进化周期中是否使用局部搜索。在多个人工数据集和真实数据集上的实验结果表明,该算法能够自动准确识别数据集中的聚类数量,同时获得高质量的聚类解。实验结果也证实了该算法相对于一些单目标聚类算法和现有多目标进化聚类算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信