K-modes and Entropy Cluster Centers Initialization Methods

Doaa S. Ali, Ayman Ghoneim, M. Saleh
{"title":"K-modes and Entropy Cluster Centers Initialization Methods","authors":"Doaa S. Ali, Ayman Ghoneim, M. Saleh","doi":"10.5220/0006245504470454","DOIUrl":null,"url":null,"abstract":"Data clustering is an important unsupervised technique in data mining which aims to extract the natural partitions in a dataset without a priori class information. Unfortunately, every clustering model is very sensitive to the set of randomly initialized centers, since such initial clusters directly influence the formation of final clusters. Thus, determining the initial cluster centers is an important issue in clustering models. Previous work has shown that using multiple clustering validity indices in a multiobjective clustering model (e.g., MODEK-Modes model) yields more accurate results than using a single validity index. In this study, we enhance the performance of MODEK-Modes model by introducing two new initialization methods. The two proposed methods are the K-Modes initialization method and the entropy initialization method. The two proposed methods are tested using ten benchmark real life datasets obtained from the UCI Machine Learning Repository. Experimental results show that the two initialization methods achieve significant improvement in the clustering performance compared to other existing initialization methods.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"58 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006245504470454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data clustering is an important unsupervised technique in data mining which aims to extract the natural partitions in a dataset without a priori class information. Unfortunately, every clustering model is very sensitive to the set of randomly initialized centers, since such initial clusters directly influence the formation of final clusters. Thus, determining the initial cluster centers is an important issue in clustering models. Previous work has shown that using multiple clustering validity indices in a multiobjective clustering model (e.g., MODEK-Modes model) yields more accurate results than using a single validity index. In this study, we enhance the performance of MODEK-Modes model by introducing two new initialization methods. The two proposed methods are the K-Modes initialization method and the entropy initialization method. The two proposed methods are tested using ten benchmark real life datasets obtained from the UCI Machine Learning Repository. Experimental results show that the two initialization methods achieve significant improvement in the clustering performance compared to other existing initialization methods.
k模式和熵簇中心初始化方法
数据聚类是数据挖掘中一种重要的无监督技术,其目的是在没有先验类信息的情况下提取数据集的自然分区。不幸的是,每个聚类模型都对随机初始化的中心集合非常敏感,因为这些初始聚类直接影响最终聚类的形成。因此,确定初始聚类中心是聚类模型中的一个重要问题。先前的研究表明,在多目标聚类模型(例如,MODEK-Modes模型)中使用多个聚类效度指标比使用单个效度指标产生更准确的结果。在本研究中,我们通过引入两种新的初始化方法来提高模型的性能。提出的两种方法分别是k模态初始化法和熵初始化法。使用从UCI机器学习存储库获得的十个基准真实生活数据集对这两种方法进行了测试。实验结果表明,与现有的初始化方法相比,这两种初始化方法在聚类性能上取得了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信