On the Parameterized Complexity of Learning First-Order Logic

Steffen van Bergerem, Martin Grohe, Martin Ritzert
{"title":"On the Parameterized Complexity of Learning First-Order Logic","authors":"Steffen van Bergerem, Martin Grohe, Martin Ritzert","doi":"10.1145/3517804.3524151","DOIUrl":null,"url":null,"abstract":"We analyse the complexity of learning first-order queries in a model-theoretic framework for supervised learning introduced by (Grohe and Turán, TOCS 2004). Previous research on the complexity of learning in this framework focussed on the question of when learning is possible in time sublinear in the background structure. Here we study the parameterized complexity of the learning problem. We have two main results. The first is a hardness result, showing that learning first-order queries is at least as hard as the corresponding model-checking problem, which implies that on general structures it is hard for the parameterized complexity class AW[*]. Our second main contribution is a fixed-parameter tractable agnostic PAC learning algorithm for first-order queries over sparse relational data (more precisely, over nowhere dense background structures).","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3524151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We analyse the complexity of learning first-order queries in a model-theoretic framework for supervised learning introduced by (Grohe and Turán, TOCS 2004). Previous research on the complexity of learning in this framework focussed on the question of when learning is possible in time sublinear in the background structure. Here we study the parameterized complexity of the learning problem. We have two main results. The first is a hardness result, showing that learning first-order queries is at least as hard as the corresponding model-checking problem, which implies that on general structures it is hard for the parameterized complexity class AW[*]. Our second main contribution is a fixed-parameter tractable agnostic PAC learning algorithm for first-order queries over sparse relational data (more precisely, over nowhere dense background structures).
一阶逻辑学习的参数化复杂度研究
我们分析了由(Grohe和Turán, TOCS 2004)引入的模型理论框架中学习一阶查询的复杂性。在此框架下,以往关于学习复杂性的研究主要集中在时间亚线性背景结构下何时学习是可能的。这里我们研究了学习问题的参数化复杂度。我们有两个主要的结果。第一个是硬度结果,表明学习一阶查询至少与相应的模型检查问题一样困难,这意味着在一般结构上,参数化复杂性类AW[*]很难。我们的第二个主要贡献是针对稀疏关系数据(更准确地说,针对无处密集的背景结构)的一阶查询的固定参数可处理不可知PAC学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信