A user-adaptive deep machine learning method for handwritten digit recognition

Huijie Zhang, Qiyu Wang, Xin Luo, Yufang Yin, Yingsong Chen, Zhouping Cui, Quan Zhou
{"title":"A user-adaptive deep machine learning method for handwritten digit recognition","authors":"Huijie Zhang, Qiyu Wang, Xin Luo, Yufang Yin, Yingsong Chen, Zhouping Cui, Quan Zhou","doi":"10.1109/ICKII.2018.8569150","DOIUrl":null,"url":null,"abstract":"The HWR (handwritten recognition) problem gains more attention with the development of machine learning. In this work, a user-adaptive HWR method is purposed for the application when only handwritten digits and few limited characters need to be recognized. Five types of CNN (Convolutional Neural Network) classifier are used in three steps: digits recognition, string-type classifier and string recognition. Experiment results show that the purposed method is capable of HWR for digits and few limited characters.","PeriodicalId":170587,"journal":{"name":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKII.2018.8569150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The HWR (handwritten recognition) problem gains more attention with the development of machine learning. In this work, a user-adaptive HWR method is purposed for the application when only handwritten digits and few limited characters need to be recognized. Five types of CNN (Convolutional Neural Network) classifier are used in three steps: digits recognition, string-type classifier and string recognition. Experiment results show that the purposed method is capable of HWR for digits and few limited characters.
一种用于手写数字识别的用户自适应深度机器学习方法
随着机器学习的发展,手写识别问题越来越受到人们的关注。本文提出了一种用户自适应的HWR方法,用于仅需要识别手写数字和少数有限字符的应用。五种类型的CNN(卷积神经网络)分类器分为三个步骤:数字识别、字符串类型分类器和字符串识别。实验结果表明,该方法能够对数字和少数受限字符进行HWR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信