Polar motion prediction based on adaptive filtering of variable forgetting factor

S. Jia, Tianhe Xu, Honglei Yang
{"title":"Polar motion prediction based on adaptive filtering of variable forgetting factor","authors":"S. Jia, Tianhe Xu, Honglei Yang","doi":"10.1109/CPGPS.2017.8075133","DOIUrl":null,"url":null,"abstract":"The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.
基于可变遗忘因子自适应滤波的极运动预测
极动(PM)是地球自转参数(ERP)的重要参数,极动的高精度预测在自主定轨、大地测量、导航和航空等应用中起着关键作用。本文提出了一种基于最小二乘法和自回归模型(LS+AR)相结合的改进算法来提高PM的预测精度。为了修正LS拟合项和预测外推量,提出了一种可变遗忘因子的自适应滤波方法,称为LS+AR+AF算法。数值结果表明,LS+AR+AF算法可以显著提高PM的预测精度,特别是对于长期预测。LS+AR+AF算法对PM X分量、PM Y分量和总PM的360天预测精度提高分别达到30.66%、28.19%和29.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信