Skeleton2Stroke: Interactive Stroke Correspondence Editing with Pose Features

Ryoma Miyauchi, Yichen Peng, Tsukasa Fukusato, Haoran Xie
{"title":"Skeleton2Stroke: Interactive Stroke Correspondence Editing with Pose Features","authors":"Ryoma Miyauchi, Yichen Peng, Tsukasa Fukusato, Haoran Xie","doi":"10.1145/3478512.3488612","DOIUrl":null,"url":null,"abstract":"Inbetweening is an important technique for computer animations where the stroke correspondence of hand-drawn illustrations plays a significant role. Previous works typically require image vectorization and enormous computation cost to achieve this goal. In this paper, we propose an interactive method to construct stroke correspondences in character illustrations. First, we utilize a deep learning-based skeleton estimation to improve the accuracy of closed-area correspondences, which are obtained using greedy algorithm. Second, we construct stroke correspondences based on the estimated closed-area correspondences. The proposed user interface is verified by our experiment to ensure that the users can achieve high accuracy with low correction in stroke correspondence.","PeriodicalId":156290,"journal":{"name":"SIGGRAPH Asia 2021 Technical Communications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478512.3488612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inbetweening is an important technique for computer animations where the stroke correspondence of hand-drawn illustrations plays a significant role. Previous works typically require image vectorization and enormous computation cost to achieve this goal. In this paper, we propose an interactive method to construct stroke correspondences in character illustrations. First, we utilize a deep learning-based skeleton estimation to improve the accuracy of closed-area correspondences, which are obtained using greedy algorithm. Second, we construct stroke correspondences based on the estimated closed-area correspondences. The proposed user interface is verified by our experiment to ensure that the users can achieve high accuracy with low correction in stroke correspondence.
骷髅2stroke:具有姿态特征的交互式笔画对应编辑
在计算机动画中,手绘插图的笔画对应关系起着重要的作用。以往的工作通常需要图像矢量化和巨大的计算成本来实现这一目标。在本文中,我们提出了一种交互式的方法来构建字符插图中的笔画对应关系。首先,我们利用基于深度学习的骨架估计来提高使用贪婪算法获得的封闭区域对应的准确性。其次,基于估计的闭区对应构造笔画对应;通过实验验证了所提出的用户界面,确保了用户在笔划对应上以低校正实现高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信