{"title":"Bipartite Matching Heuristics with Quality Guarantees on Shared Memory Parallel Computers","authors":"F. Dufossé, K. Kaya, B. Uçar","doi":"10.1109/IPDPS.2014.63","DOIUrl":null,"url":null,"abstract":"We propose two heuristics for the bipartite matching problem that are amenable to shared-memory parallelization. The first heuristic is very intriguing from parallelization perspective. It has no significant algorithmic synchronization overhead and no conflict resolution is needed across threads. We show that this heuristic has an approximation ratio of around 0.632. The second heuristic is designed to obtain a larger matching by employing the well-known Karp-Sipser heuristic on a judiciously chosen subgraph of the original graph. We show that the Karp-Sipser heuristic always finds a maximum cardinality matching in the chosen subgraph. Although the Karp-Sipser heuristic is hard to parallelize for general graphs, we exploit the structure of the selected sub graphs to propose a specialized implementation which demonstrates a very good scalability. Based on our experiments and theoretical evidence, we conjecture that this second heuristic obtains matchings with cardinality of at least 0.866 of the maximum cardinality. We discuss parallel implementations of the proposed heuristics on shared memory systems. Experimental results, for demonstrating speed-ups and verifying the theoretical results in practice, are provided.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"70 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose two heuristics for the bipartite matching problem that are amenable to shared-memory parallelization. The first heuristic is very intriguing from parallelization perspective. It has no significant algorithmic synchronization overhead and no conflict resolution is needed across threads. We show that this heuristic has an approximation ratio of around 0.632. The second heuristic is designed to obtain a larger matching by employing the well-known Karp-Sipser heuristic on a judiciously chosen subgraph of the original graph. We show that the Karp-Sipser heuristic always finds a maximum cardinality matching in the chosen subgraph. Although the Karp-Sipser heuristic is hard to parallelize for general graphs, we exploit the structure of the selected sub graphs to propose a specialized implementation which demonstrates a very good scalability. Based on our experiments and theoretical evidence, we conjecture that this second heuristic obtains matchings with cardinality of at least 0.866 of the maximum cardinality. We discuss parallel implementations of the proposed heuristics on shared memory systems. Experimental results, for demonstrating speed-ups and verifying the theoretical results in practice, are provided.