Melody Infilling with User-Provided Structural Context

Chih-Pin Tan, A. Su, Yi-Hsuan Yang
{"title":"Melody Infilling with User-Provided Structural Context","authors":"Chih-Pin Tan, A. Su, Yi-Hsuan Yang","doi":"10.48550/arXiv.2210.02829","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel Transformer-based model for music score infilling, to generate a music passage that fills in the gap between given past and future contexts. While existing infilling approaches can generate a passage that connects smoothly locally with the given contexts, they do not take into account the musical form or structure of the music and may therefore generate overly smooth results. To address this issue, we propose a structure-aware conditioning approach that employs a novel attention-selecting module to supply user-provided structure-related information to the Transformer for infilling. With both objective and subjective evaluations, we show that the proposed model can harness the structural information effectively and generate melodies in the style of pop of higher quality than the two existing structure-agnostic infilling models.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.02829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel Transformer-based model for music score infilling, to generate a music passage that fills in the gap between given past and future contexts. While existing infilling approaches can generate a passage that connects smoothly locally with the given contexts, they do not take into account the musical form or structure of the music and may therefore generate overly smooth results. To address this issue, we propose a structure-aware conditioning approach that employs a novel attention-selecting module to supply user-provided structure-related information to the Transformer for infilling. With both objective and subjective evaluations, we show that the proposed model can harness the structural information effectively and generate melodies in the style of pop of higher quality than the two existing structure-agnostic infilling models.
旋律填充与用户提供的结构背景
本文提出了一种新颖的基于transformer的乐谱填充模型,以生成一个音乐段落来填充给定的过去和未来上下文之间的空白。虽然现有的填充方法可以产生与给定上下文流畅地局部连接的段落,但它们没有考虑音乐的音乐形式或结构,因此可能产生过于流畅的结果。为了解决这个问题,我们提出了一种结构感知的条件反射方法,该方法采用一种新颖的注意力选择模块,向Transformer提供用户提供的与结构相关的信息以供填充。客观评价和主观评价表明,该模型能够有效地利用结构信息,生成的旋律比现有的两种结构不可知填充模型的旋律质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信