{"title":"Winter is here: Summarizing Twitter Streams related to Pre-Scheduled Events","authors":"Anietie U Andy, D. Wijaya, Chris Callison-Burch","doi":"10.18653/v1/W19-3412","DOIUrl":null,"url":null,"abstract":"Pre-scheduled events, such as TV shows and sports games, usually garner considerable attention from the public. Twitter captures large volumes of discussions and messages related to these events, in real-time. Twitter streams related to pre-scheduled events are characterized by the following: (1) spikes in the volume of published tweets reflect the highlights of the event and (2) some of the published tweets make reference to the characters involved in the event, in the context in which they are currently portrayed in a subevent. In this paper, we take advantage of these characteristics to identify the highlights of pre-scheduled events from tweet streams and we demonstrate a method to summarize these highlights. We evaluate our algorithm on tweets collected around 2 episodes of a popular TV show, Game of Thrones, Season 7.","PeriodicalId":296321,"journal":{"name":"Proceedings of the Second Workshop on Storytelling","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Storytelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Pre-scheduled events, such as TV shows and sports games, usually garner considerable attention from the public. Twitter captures large volumes of discussions and messages related to these events, in real-time. Twitter streams related to pre-scheduled events are characterized by the following: (1) spikes in the volume of published tweets reflect the highlights of the event and (2) some of the published tweets make reference to the characters involved in the event, in the context in which they are currently portrayed in a subevent. In this paper, we take advantage of these characteristics to identify the highlights of pre-scheduled events from tweet streams and we demonstrate a method to summarize these highlights. We evaluate our algorithm on tweets collected around 2 episodes of a popular TV show, Game of Thrones, Season 7.