{"title":"Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems","authors":"Yuichi Yoshida, Yuan Zhou","doi":"10.1145/2554797.2554836","DOIUrl":null,"url":null,"abstract":"We consider approximation schemes for the maximum constraint satisfaction problems and the maximum assignment problems. Though they are NP-Hard in general, if the instance is \"dense\" or \"locally dense\", then they are known to have approximation schemes that run in polynomial time or quasi-polynomial time. In this paper, we give a unified method of showing these approximation schemes based on the Sherali-Adams linear programming relaxation hierarchy. We also use our linear programming-based framework to show new algorithmic results on the optimization version of the hypergraph isomorphism problem.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We consider approximation schemes for the maximum constraint satisfaction problems and the maximum assignment problems. Though they are NP-Hard in general, if the instance is "dense" or "locally dense", then they are known to have approximation schemes that run in polynomial time or quasi-polynomial time. In this paper, we give a unified method of showing these approximation schemes based on the Sherali-Adams linear programming relaxation hierarchy. We also use our linear programming-based framework to show new algorithmic results on the optimization version of the hypergraph isomorphism problem.