Adaptive and incremental query expansion for cluster-based browsing

K. Eguchi, Hidetaka Ito, A. Kumamoto, Y. Kanata
{"title":"Adaptive and incremental query expansion for cluster-based browsing","authors":"K. Eguchi, Hidetaka Ito, A. Kumamoto, Y. Kanata","doi":"10.1109/DASFAA.1999.765733","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method of information retrieval which combines adaptive and incremental query expansion with cluster-based browsing. The proposed method attempts to accurately learn users' interests from their relevance judgments on clustered search results instead of individual documents, reducing users' loads for the judgments. The use of adaptive relevance feedback leads to the capability for tracking vague or dynamically shifting goals of users. Incrementally expanded and refined queries can be used in re-searching to improve the retrieval effectiveness. We apply the proposed method to the information retrieval on the World Wide Web and demonstrate its effectiveness through basic experiments.","PeriodicalId":229416,"journal":{"name":"Proceedings. 6th International Conference on Advanced Systems for Advanced Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 6th International Conference on Advanced Systems for Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASFAA.1999.765733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a new method of information retrieval which combines adaptive and incremental query expansion with cluster-based browsing. The proposed method attempts to accurately learn users' interests from their relevance judgments on clustered search results instead of individual documents, reducing users' loads for the judgments. The use of adaptive relevance feedback leads to the capability for tracking vague or dynamically shifting goals of users. Incrementally expanded and refined queries can be used in re-searching to improve the retrieval effectiveness. We apply the proposed method to the information retrieval on the World Wide Web and demonstrate its effectiveness through basic experiments.
基于集群浏览的自适应增量查询扩展
本文提出了一种将自适应增量式查询扩展与聚类浏览相结合的信息检索方法。该方法试图通过用户对聚类搜索结果的相关性判断而不是单个文档来准确地学习用户的兴趣,从而减少用户对判断的负担。自适应相关反馈的使用导致跟踪模糊或动态变化的用户目标的能力。在重新搜索中可以使用增量扩展和细化的查询来提高检索效率。将该方法应用于万维网信息检索,并通过基础实验验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信