Towards Building Autonomous Data Services on Azure

Yiwen Zhu, Yuanyuan Tian, Joyce Cahoon, Subru Krishnan, A. Agarwal, R. Alotaibi, Jesús Camacho-Rodríguez, Bibin Chundatt, Andrew Chung, Niharika Dutta, Andrew Fogarty, Anja Gruenheid, Brandon Haynes, Matteo Interlandi, Minu Iyer, Nick Jurgens, Sumeet Khushalani, Brian Kroth, M. Kumar, Jyoti Leeka, Sergiy Matusevych, Minni Mittal, A. Mueller, Kartheek Muthyala, Harsha Nagulapalli, Yoonjae Park, Hiren Patel, Anna Pavlenko, Olga Poppe, Santhosh Ravindran, Karla Saur, Rathijit Sen, Steve Suh, Arijit Tarafdar, Kunal Waghray, Demin Wang, C. Curino, R. Ramakrishnan
{"title":"Towards Building Autonomous Data Services on Azure","authors":"Yiwen Zhu, Yuanyuan Tian, Joyce Cahoon, Subru Krishnan, A. Agarwal, R. Alotaibi, Jesús Camacho-Rodríguez, Bibin Chundatt, Andrew Chung, Niharika Dutta, Andrew Fogarty, Anja Gruenheid, Brandon Haynes, Matteo Interlandi, Minu Iyer, Nick Jurgens, Sumeet Khushalani, Brian Kroth, M. Kumar, Jyoti Leeka, Sergiy Matusevych, Minni Mittal, A. Mueller, Kartheek Muthyala, Harsha Nagulapalli, Yoonjae Park, Hiren Patel, Anna Pavlenko, Olga Poppe, Santhosh Ravindran, Karla Saur, Rathijit Sen, Steve Suh, Arijit Tarafdar, Kunal Waghray, Demin Wang, C. Curino, R. Ramakrishnan","doi":"10.1145/3555041.3589674","DOIUrl":null,"url":null,"abstract":"Modern cloud has turned data services into easily accessible commodities. With just a few clicks, users are now able to access a catalog of data processing systems for a wide range of tasks. How- ever, the cloud brings in both complexity and opportunity. While cloud users can quickly start an application by using various data services, it can be difficult to configure and optimize these services to gain the most value from them. For cloud providers, managing every aspect of an ever-increasing set of data services, while meeting customer SLAs and minimizing operational cost is becoming more challenging. Cloud technology enables the collection of significant amounts of workload traces and system telemetry. With the progress in data science (DS) and machine learning (ML), it is feasible and desirable to utilize a data-driven, ML-based approach to automate various aspects of data services, resulting in the creation of autonomous data services. This paper presents our perspectives and insights on creating autonomous data services on Azure. It also covers the future endeavors we plan to undertake and unresolved issues that still need attention.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern cloud has turned data services into easily accessible commodities. With just a few clicks, users are now able to access a catalog of data processing systems for a wide range of tasks. How- ever, the cloud brings in both complexity and opportunity. While cloud users can quickly start an application by using various data services, it can be difficult to configure and optimize these services to gain the most value from them. For cloud providers, managing every aspect of an ever-increasing set of data services, while meeting customer SLAs and minimizing operational cost is becoming more challenging. Cloud technology enables the collection of significant amounts of workload traces and system telemetry. With the progress in data science (DS) and machine learning (ML), it is feasible and desirable to utilize a data-driven, ML-based approach to automate various aspects of data services, resulting in the creation of autonomous data services. This paper presents our perspectives and insights on creating autonomous data services on Azure. It also covers the future endeavors we plan to undertake and unresolved issues that still need attention.
迈向在Azure上构建自治数据服务
现代云已经把数据服务变成了易于获取的商品。只需点击几下,用户现在就可以访问数据处理系统的目录,以执行各种任务。然而,云计算带来了复杂性和机遇。虽然云用户可以通过使用各种数据服务快速启动应用程序,但很难配置和优化这些服务以从中获得最大价值。对于云提供商来说,管理不断增加的数据服务集的各个方面,同时满足客户sla和最小化运营成本正变得越来越具有挑战性。云技术可以收集大量的工作负载跟踪和系统遥测。随着数据科学(DS)和机器学习(ML)的进步,利用数据驱动的、基于ML的方法自动化数据服务的各个方面是可行和可取的,从而创建自主数据服务。本文介绍了我们对在Azure上创建自治数据服务的观点和见解。它还包括我们计划进行的未来努力和仍然需要注意的尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信