Fast feature matching for detailed point cloud generation

Daniel Berjón, R. Pagés, F. Morán
{"title":"Fast feature matching for detailed point cloud generation","authors":"Daniel Berjón, R. Pagés, F. Morán","doi":"10.1109/IPTA.2016.7820978","DOIUrl":null,"url":null,"abstract":"Structure from motion is a very popular technique for obtaining three-dimensional point cloud-based reconstructions of objects from un-organised sets of images by analysing the correspondences between feature points detected in those images. However, the point clouds stemming from usual feature point extractors such as SIFT are frequently too sparse for reliable surface recovery. In this paper we show that alternate feature descriptors such as A-KAZE, which provide denser coverage of images, yield better results and more detailed point clouds. Unfortunately, the use of a dramatically increased number of points per image poses a computational challenge. We propose a technique based on epipolar geometry restrictions to significantly cut down on processing time and an efficient implementation thereof on a GPU.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Structure from motion is a very popular technique for obtaining three-dimensional point cloud-based reconstructions of objects from un-organised sets of images by analysing the correspondences between feature points detected in those images. However, the point clouds stemming from usual feature point extractors such as SIFT are frequently too sparse for reliable surface recovery. In this paper we show that alternate feature descriptors such as A-KAZE, which provide denser coverage of images, yield better results and more detailed point clouds. Unfortunately, the use of a dramatically increased number of points per image poses a computational challenge. We propose a technique based on epipolar geometry restrictions to significantly cut down on processing time and an efficient implementation thereof on a GPU.
快速特征匹配的详细点云生成
基于运动的结构是一种非常流行的技术,它通过分析在这些图像中检测到的特征点之间的对应关系,从无组织的图像集中获得基于三维点云的物体重建。然而,通常的特征点提取器(如SIFT)产生的点云往往过于稀疏,无法可靠地恢复表面。在本文中,我们展示了替代特征描述符,如A-KAZE,它提供了更密集的图像覆盖,产生更好的结果和更详细的点云。不幸的是,使用急剧增加的每个图像点的数量带来了计算上的挑战。我们提出了一种基于极几何限制的技术,以显著缩短处理时间,并在GPU上有效实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信