Document Classification by Computing an Echo in a Very Simple Neural Network

Christophe Brouard
{"title":"Document Classification by Computing an Echo in a Very Simple Neural Network","authors":"Christophe Brouard","doi":"10.1109/ICTAI.2012.104","DOIUrl":null,"url":null,"abstract":"In this paper we present a new classification system called ECHO. This system is based on a principle of echo and applied to document classification. It computes the score of a document for a class by combining a bottom-up and a top-down propagation of activation in a very simple neural network. This system bridges a gap between Machine Learning methods and Information Retrieval since the bottom-up and the top-down propagations can be seen as the measures of the specificity and exhaustivity which underlie the models of relevance used in Information Retrieval. The system has been tested on the Reuters 21578 collection and in the context of an international challenge on large scale hierarchical text classification with corpus extracted from Dmoz and Wikipedia. Its comparison with other classification systems has shown its efficiency.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we present a new classification system called ECHO. This system is based on a principle of echo and applied to document classification. It computes the score of a document for a class by combining a bottom-up and a top-down propagation of activation in a very simple neural network. This system bridges a gap between Machine Learning methods and Information Retrieval since the bottom-up and the top-down propagations can be seen as the measures of the specificity and exhaustivity which underlie the models of relevance used in Information Retrieval. The system has been tested on the Reuters 21578 collection and in the context of an international challenge on large scale hierarchical text classification with corpus extracted from Dmoz and Wikipedia. Its comparison with other classification systems has shown its efficiency.
在一个非常简单的神经网络中计算回声的文档分类
本文提出了一种新的分类系统ECHO。该系统基于回声原理,应用于文献分类。它通过在一个非常简单的神经网络中结合自底向上和自顶向下的激活传播来计算一个类的文档分数。该系统弥合了机器学习方法和信息检索之间的差距,因为自底向上和自顶向下的传播可以被视为信息检索中使用的相关性模型的特异性和穷竭性的度量。该系统已在路透社21578集上进行了测试,并在大规模分层文本分类的国际挑战背景下使用从Dmoz和Wikipedia提取的语料库进行了测试。与其他分类系统的比较表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信