Siamese Attention and Point Adaptive Network for Visual Tracking

T. Dinh, Long Tran Quoc, Kien Thai Trung
{"title":"Siamese Attention and Point Adaptive Network for Visual Tracking","authors":"T. Dinh, Long Tran Quoc, Kien Thai Trung","doi":"10.1109/MAPR53640.2021.9585250","DOIUrl":null,"url":null,"abstract":"Siamese-based trackers have achieved excellent performance on visual object tracking. Most of the existing trackers usually compute the features of the target template and search image independently and rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. This paper proposes Siamese attention and point adaptive head network referred to as SiamAPN for Visual Tracking. Siamese attention includes self-attention and cross-attention for feature enhancement and aggregating rich contextual inter-dependencies between the target template and the search image. And Point head network for bounding box prediction is both proposal and anchor-free. The proposed framework is simple and effective. Extensive experiments on visual tracking benchmarks, including OTB100, UAV123, and VOT2018, demonstrate that our tracker achieves state-of-the-art performance and runs at 45 FPS.","PeriodicalId":233540,"journal":{"name":"2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPR53640.2021.9585250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Siamese-based trackers have achieved excellent performance on visual object tracking. Most of the existing trackers usually compute the features of the target template and search image independently and rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. This paper proposes Siamese attention and point adaptive head network referred to as SiamAPN for Visual Tracking. Siamese attention includes self-attention and cross-attention for feature enhancement and aggregating rich contextual inter-dependencies between the target template and the search image. And Point head network for bounding box prediction is both proposal and anchor-free. The proposed framework is simple and effective. Extensive experiments on visual tracking benchmarks, including OTB100, UAV123, and VOT2018, demonstrate that our tracker achieves state-of-the-art performance and runs at 45 FPS.
视觉跟踪的连体注意和点自适应网络
基于连体体的跟踪器在视觉目标跟踪方面取得了优异的性能。现有的大多数跟踪器通常是独立计算目标模板的特征和搜索图像,依靠多尺度搜索方案或预定义的锚框来准确估计目标的尺度和纵横比。本文提出了用于视觉跟踪的SiamAPN (SiamAPN)连体注意和点自适应头部网络。暹罗注意包括自注意和交叉注意,用于特征增强和聚合目标模板和搜索图像之间丰富的上下文相互依赖关系。而用于边界盒预测的点首网络既具有提议性,又具有无锚性。所提出的框架简单有效。在视觉跟踪基准(包括OTB100, UAV123和VOT2018)上进行的大量实验表明,我们的跟踪器实现了最先进的性能,并以45 FPS的速度运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信