Data transformations for eliminating conflict misses

Gabriel Rivera, C. Tseng
{"title":"Data transformations for eliminating conflict misses","authors":"Gabriel Rivera, C. Tseng","doi":"10.1145/277650.277661","DOIUrl":null,"url":null,"abstract":"Many cache misses in scientific programs are due to conflicts caused by limited set associativity. We examine two compile-time data-layout transformations for eliminating conflict misses, concentrating on misses occuring on every loop iteration. Inter-variable padding adjusts variable base addresses, while intra-variable padding modifies array dimension sizes. Two levels of precision are evaluated. PADLITE only uses array and column dimension sizes, relying on assumptions about common array reference patterns. PAD analyzes programs, detecting conflict misses by linearizing array references and calculating conflict distances between uniformly-generated references. The Euclidean algorithm for computing the gcd of two numbers is used to predict conflicts between different array columns for linear algebra codes. Experiments on a range of programs indicate PADLITE can eliminate conflicts for benchmarks, but PAD is more effective over a range of cache and problem sizes. Padding reduces cache miss rates by 16% on average for a 16K direct-mapped cache. Execution times are reduced by 6% on average, with some SPEC95 programs improving up to 15%.","PeriodicalId":365404,"journal":{"name":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","volume":"86 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"264","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277650.277661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 264

Abstract

Many cache misses in scientific programs are due to conflicts caused by limited set associativity. We examine two compile-time data-layout transformations for eliminating conflict misses, concentrating on misses occuring on every loop iteration. Inter-variable padding adjusts variable base addresses, while intra-variable padding modifies array dimension sizes. Two levels of precision are evaluated. PADLITE only uses array and column dimension sizes, relying on assumptions about common array reference patterns. PAD analyzes programs, detecting conflict misses by linearizing array references and calculating conflict distances between uniformly-generated references. The Euclidean algorithm for computing the gcd of two numbers is used to predict conflicts between different array columns for linear algebra codes. Experiments on a range of programs indicate PADLITE can eliminate conflicts for benchmarks, but PAD is more effective over a range of cache and problem sizes. Padding reduces cache miss rates by 16% on average for a 16K direct-mapped cache. Execution times are reduced by 6% on average, with some SPEC95 programs improving up to 15%.
用于消除冲突遗漏的数据转换
在科学项目中,很多缓存丢失都是由于集合结合性有限导致的冲突。我们研究了两种用于消除冲突错误的编译时数据布局转换,重点关注每次循环迭代中发生的错误。变量间填充调整变量的基址,而变量内填充修改数组的维度大小。评估了两个级别的精度。PADLITE只使用数组和列的维度大小,依赖于对常见数组引用模式的假设。PAD分析程序,通过线性化数组引用和计算均匀生成的引用之间的冲突距离来检测冲突缺失。利用计算两数gcd的欧几里得算法来预测线性代数代码中不同数组列之间的冲突。在一系列程序上进行的实验表明,PADLITE可以消除基准测试中的冲突,但是在一定的缓存和问题大小范围内,PAD更为有效。对于一个16K的直接映射缓存,填充可以平均减少16%的缓存缺失率。执行时间平均减少了6%,其中一些SPEC95程序提高了15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信