DSGE Models, Detrending, and the Method of Moments

Charles Olivier Mao Takongmo
{"title":"DSGE Models, Detrending, and the Method of Moments","authors":"Charles Olivier Mao Takongmo","doi":"10.2139/ssrn.3322026","DOIUrl":null,"url":null,"abstract":"One important question in the DSGE literature is whether we should detrend data when estimating the parameters of a DSGE model using the moment method. It has been common in the literature to detrend data in the same way the model is detrended. Doing so works relatively well with linear models, in part because in such cases the information that disappears from the data is usually related to the parameters that also disappear from the detrended model. Unfortunately, in heavy non-linear DSGE models, parameters rarely disappear from detrended models, but information does disappear from the detrended data. Using a simple real business cycle model, we show that both the moment method estimators of parameters and the estimated responses of endogenous variables to a technological shock can be seriously inaccurate when detrended data are used in the estimation process. Using a dynamic stochastic general equilibrium model and U.S. data, we show that detrending the data before estimating the parameters may result in a seriously misleading response of endogenous variables to monetary shocks. We suggest building the moment conditions using raw data, irrespective of the trend observed in the data.","PeriodicalId":127579,"journal":{"name":"ERN: Keynes; Keynesian; Post-Keynesian (Topic)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Keynes; Keynesian; Post-Keynesian (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3322026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One important question in the DSGE literature is whether we should detrend data when estimating the parameters of a DSGE model using the moment method. It has been common in the literature to detrend data in the same way the model is detrended. Doing so works relatively well with linear models, in part because in such cases the information that disappears from the data is usually related to the parameters that also disappear from the detrended model. Unfortunately, in heavy non-linear DSGE models, parameters rarely disappear from detrended models, but information does disappear from the detrended data. Using a simple real business cycle model, we show that both the moment method estimators of parameters and the estimated responses of endogenous variables to a technological shock can be seriously inaccurate when detrended data are used in the estimation process. Using a dynamic stochastic general equilibrium model and U.S. data, we show that detrending the data before estimating the parameters may result in a seriously misleading response of endogenous variables to monetary shocks. We suggest building the moment conditions using raw data, irrespective of the trend observed in the data.
DSGE模型,去趋势和矩量法
DSGE文献中的一个重要问题是,当使用矩量法估计DSGE模型的参数时,我们是否应该去趋势数据。在文献中,以与模型相同的方式去趋势化数据是很常见的。这样做在线性模型中效果相对较好,部分原因是在这种情况下,从数据中消失的信息通常与从去趋势模型中消失的参数相关。不幸的是,在重型非线性DSGE模型中,参数很少从去趋势模型中消失,但信息确实从去趋势数据中消失。使用一个简单的真实经济周期模型,我们表明,当在估计过程中使用非趋势数据时,参数的矩法估计和内生变量对技术冲击的估计响应都可能严重不准确。使用动态随机一般均衡模型和美国数据,我们表明在估计参数之前对数据进行去趋势化可能会导致内生变量对货币冲击的严重误导反应。我们建议使用原始数据建立力矩条件,而不考虑在数据中观察到的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信