Data mining and model-predictive approach for blast furnace thermal control

D. Shnayder, L. Kazarinov, T. Barbasova, A. Lipatnikov
{"title":"Data mining and model-predictive approach for blast furnace thermal control","authors":"D. Shnayder, L. Kazarinov, T. Barbasova, A. Lipatnikov","doi":"10.1109/INTELLISYS.2017.8324364","DOIUrl":null,"url":null,"abstract":"This research proposes a method of blast furnace control based on criteria of increased productivity and lowers coke consumption. The method employs model-predictive control technology. Herewith constructing the model of the blast furnace process involves real-time operating regime data. Model-building assumes two approaches for clustering of operating parameters values using criteria of blast furnace efficiency. The first one uses elliptic surfaces. The second employs self-organizing Kohonen networks. Moreover when having the lack of informative measurements data the solution of the first task is used to normalize the solution of the second task. The research sets and solves the problem of real-time optimization of the blast furnace regime parameters.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"41 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This research proposes a method of blast furnace control based on criteria of increased productivity and lowers coke consumption. The method employs model-predictive control technology. Herewith constructing the model of the blast furnace process involves real-time operating regime data. Model-building assumes two approaches for clustering of operating parameters values using criteria of blast furnace efficiency. The first one uses elliptic surfaces. The second employs self-organizing Kohonen networks. Moreover when having the lack of informative measurements data the solution of the first task is used to normalize the solution of the second task. The research sets and solves the problem of real-time optimization of the blast furnace regime parameters.
高炉热控制的数据挖掘与模型预测方法
本文提出了一种以提高生产效率和降低焦炭消耗为标准的高炉控制方法。该方法采用模型预测控制技术。因此,建立高炉过程模型涉及到实时运行状态数据。模型的建立采用两种方法对高炉效率的运行参数值进行聚类。第一个使用椭圆曲面。第二种方法采用自组织的Kohonen网络。此外,当缺乏信息性测量数据时,使用第一任务的解来规范化第二任务的解。该研究设定并解决了高炉工况参数的实时优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信