{"title":"Air Absorption Filtering Method Based on Approximate Green's Function for Stokes' Equation","authors":"B. Hamilton","doi":"10.23919/DAFx51585.2021.9768289","DOIUrl":null,"url":null,"abstract":"Air absorption effects lead to significant attenuation in high frequencies over long distances and this is critical to model in wide-band virtual acoustic simulations. Air absorption is commonly modelled using filter banks applied to an impulse response or to individual impulse events (rays or image sources) arriving at a receiver. Such filter banks require non-trivial fitting to air absorption attenuation curves, as a function of time or distance, in the case of IIR approximations' or may suffer from overlap-add artefacts in the case of FIR approximations. In this study, a filter method is presented which avoids the aforementioned issues. The proposed approach relies on a time-varying diffusion kernel that is found in an approximate Green's function solution to Stokes' equation in free space. This kernel acts as a low-pass filter that is parametrised by physical constants, and can be applied to an impulse response using time-varying convolution. Numerical examples are presented demonstrating the utility of this approach for adding air absorption effects to room impulse responses simulated using geometrical acoustics or wave-based methods.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Air absorption effects lead to significant attenuation in high frequencies over long distances and this is critical to model in wide-band virtual acoustic simulations. Air absorption is commonly modelled using filter banks applied to an impulse response or to individual impulse events (rays or image sources) arriving at a receiver. Such filter banks require non-trivial fitting to air absorption attenuation curves, as a function of time or distance, in the case of IIR approximations' or may suffer from overlap-add artefacts in the case of FIR approximations. In this study, a filter method is presented which avoids the aforementioned issues. The proposed approach relies on a time-varying diffusion kernel that is found in an approximate Green's function solution to Stokes' equation in free space. This kernel acts as a low-pass filter that is parametrised by physical constants, and can be applied to an impulse response using time-varying convolution. Numerical examples are presented demonstrating the utility of this approach for adding air absorption effects to room impulse responses simulated using geometrical acoustics or wave-based methods.