Beyond Microphone: mmWave-Based Interference-Resilient Voice Activity Detection

M. Z. Ozturk, Chenshu Wu, Beibei Wang, Min Wu, K. Liu
{"title":"Beyond Microphone: mmWave-Based Interference-Resilient Voice Activity Detection","authors":"M. Z. Ozturk, Chenshu Wu, Beibei Wang, Min Wu, K. Liu","doi":"10.1145/3539490.3539599","DOIUrl":null,"url":null,"abstract":"Microphone-based voice activity detection systems usually require hotword detection and they cannot perform well under the presence of interference and noise. Users attending online meetings in noisy environments usually mute and unmute their microphones manually due to the limited performance of interference-resilient VAD. In order to automate voice detection in challenging environments without dictionary limitations, we explore beyond microphones and propose to use mmWave-based sensing, which is already available in many smart phones and IoT devices. Our preliminary experiments in multiple places with several users indicate that mmWave-based VAD can match and surpass the performance of an audio-based VAD in noisy conditions, while being robust against interference.","PeriodicalId":377149,"journal":{"name":"Proceedings of the 1st ACM International Workshop on Intelligent Acoustic Systems and Applications","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Workshop on Intelligent Acoustic Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539490.3539599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Microphone-based voice activity detection systems usually require hotword detection and they cannot perform well under the presence of interference and noise. Users attending online meetings in noisy environments usually mute and unmute their microphones manually due to the limited performance of interference-resilient VAD. In order to automate voice detection in challenging environments without dictionary limitations, we explore beyond microphones and propose to use mmWave-based sensing, which is already available in many smart phones and IoT devices. Our preliminary experiments in multiple places with several users indicate that mmWave-based VAD can match and surpass the performance of an audio-based VAD in noisy conditions, while being robust against interference.
超越麦克风:基于毫米波的抗干扰语音活动检测
基于麦克风的语音活动检测系统通常需要热词检测,在干扰和噪声存在的情况下不能很好地工作。由于抗干扰VAD性能有限,用户在嘈杂环境下参加在线会议时,通常需要手动将麦克风静音和取消静音。为了在没有字典限制的具有挑战性的环境中自动进行语音检测,我们探索了麦克风之外的领域,并建议使用基于毫米波的传感,这已经在许多智能手机和物联网设备中可用。我们在多个用户的多个地方进行的初步实验表明,基于毫米波的VAD在噪声条件下可以匹配并超过基于音频的VAD的性能,同时对干扰具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信