{"title":"Multi-Objective Clustering Ensemble","authors":"Katti Faceli, A. Carvalho, M. D. Souto","doi":"10.1109/HIS.2006.49","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.