The Direct Solution of Weighted and Equality Constrained Least-Squares Problems

J. Barlow, S. Handy
{"title":"The Direct Solution of Weighted and Equality Constrained Least-Squares Problems","authors":"J. Barlow, S. Handy","doi":"10.1137/0909046","DOIUrl":null,"url":null,"abstract":"We consider methods to solve two closely related linear least-squares problems. The first problem is that of minimizing ${\\|f - Ex\\|}_2 $ subject to the constraint $Cx = g$. We call this the linear least-squares (LSE) problem. The second is that of minimizing \\[ \\left\\| {\\left( {\\begin{array}{*{20}c} {\\tau g} \\\\ f \\\\ \\end{array} } \\right) - \\left( {\\begin{array}{*{20}c} {\\tau C} \\\\ E \\\\ \\end{array} } \\right)x} \\right\\|_2 \\] for some large weight $\\tau $. This second problem is called the WLS problem.A column-pivoting strategy based entirely upon the constraint matrix C is developed for solving the weighted least-squares (WLS) problem. This strategy allows the user to perform the factorization of $(\\begin{array}{*{20}c} {\\tau C} \\\\ E \\\\ \\end{array} )$ in stable fashion while needing to access no more than one row of E at a time. Moreover, if the matrix E is changed without changing the sparsity pattern or the matrix C, then the pivoting need not be redone. We can simply reuse the same column ordering. This kind of computation frequently arises in optimization contexts.An error analysis of the method is presented. It is shown to be closely related to the error analysis of a procedure attributed to Bjorck and Golub in their solving of the LSE problem. The sparsity properties of the algorithm are demonstrated on some Harwell test matrices.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We consider methods to solve two closely related linear least-squares problems. The first problem is that of minimizing ${\|f - Ex\|}_2 $ subject to the constraint $Cx = g$. We call this the linear least-squares (LSE) problem. The second is that of minimizing \[ \left\| {\left( {\begin{array}{*{20}c} {\tau g} \\ f \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {\tau C} \\ E \\ \end{array} } \right)x} \right\|_2 \] for some large weight $\tau $. This second problem is called the WLS problem.A column-pivoting strategy based entirely upon the constraint matrix C is developed for solving the weighted least-squares (WLS) problem. This strategy allows the user to perform the factorization of $(\begin{array}{*{20}c} {\tau C} \\ E \\ \end{array} )$ in stable fashion while needing to access no more than one row of E at a time. Moreover, if the matrix E is changed without changing the sparsity pattern or the matrix C, then the pivoting need not be redone. We can simply reuse the same column ordering. This kind of computation frequently arises in optimization contexts.An error analysis of the method is presented. It is shown to be closely related to the error analysis of a procedure attributed to Bjorck and Golub in their solving of the LSE problem. The sparsity properties of the algorithm are demonstrated on some Harwell test matrices.
加权等约束最小二乘问题的直接解
我们考虑求解两个密切相关的线性最小二乘问题的方法。第一个问题是在$Cx = g$约束下最小化${\|f - Ex\|}_2 $的问题。我们称之为线性最小二乘(LSE)问题。第二个是最小化\[ \left\| {\left( {\begin{array}{*{20}c} {\tau g} \\ f \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {\tau C} \\ E \\ \end{array} } \right)x} \right\|_2 \]对于一些大权重$\tau $。第二个问题被称为WLS问题。为了解决加权最小二乘问题,提出了一种完全基于约束矩阵C的列旋转策略。此策略允许用户以稳定的方式执行$(\begin{array}{*{20}c} {\tau C} \\ E \\ \end{array} )$的因式分解,同时每次只需要访问一行E。此外,如果改变矩阵E而不改变稀疏模式或矩阵C,则不需要重新进行旋转。我们可以简单地重用相同的列顺序。这种计算经常出现在优化环境中。给出了该方法的误差分析。它被证明与Bjorck和Golub在解决LSE问题时所使用的程序的误差分析密切相关。在一些Harwell测试矩阵上证明了该算法的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信