{"title":"Secure and Resilient Control Design for Cloud Enabled Networked Control Systems","authors":"Zhiheng Xu, Quanyan Zhu","doi":"10.1145/2808705.2808708","DOIUrl":null,"url":null,"abstract":"Cloud computing enables resource-constrained Networked Control Systems (NCSs) to outsource heavy computations to a cloud server with massive computational resources. However, Cloud-enabled NCSs (CE-NCSs) introduce new challenges arising from the trustworthiness of the cloud and the cyber-physical connections between the control system and the cloud. To address these concerns, this paper presents a secure and resilient mechanism, which employs customized cryptographic tools to encrypt the data of a control problem and develops verification methods to guarantee the integrity of the computational results from the cloud. In addition, our design enables a Switching Mode Mechanism (SMM) to provide resiliency to the NCSs when the system successively fails to receive correct control inputs from the cloud. We demonstrate that the mechanism can achieve the data confidentiality and integrity, guarantee the stability, and enhance the resiliency. Finally, an Unmanned Aerial Vehicle (UAV) example is used to corroborate these properties.","PeriodicalId":144851,"journal":{"name":"Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808705.2808708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Cloud computing enables resource-constrained Networked Control Systems (NCSs) to outsource heavy computations to a cloud server with massive computational resources. However, Cloud-enabled NCSs (CE-NCSs) introduce new challenges arising from the trustworthiness of the cloud and the cyber-physical connections between the control system and the cloud. To address these concerns, this paper presents a secure and resilient mechanism, which employs customized cryptographic tools to encrypt the data of a control problem and develops verification methods to guarantee the integrity of the computational results from the cloud. In addition, our design enables a Switching Mode Mechanism (SMM) to provide resiliency to the NCSs when the system successively fails to receive correct control inputs from the cloud. We demonstrate that the mechanism can achieve the data confidentiality and integrity, guarantee the stability, and enhance the resiliency. Finally, an Unmanned Aerial Vehicle (UAV) example is used to corroborate these properties.