Performing Fourier Transform on a Velocity Profile From Atmospheric Turbulence Studies

Richard Adansi, Jose Terrazas, Arturo Rodríguez, V. Kotteda, Vinod Kumar, A. Rubio, E. Avalos
{"title":"Performing Fourier Transform on a Velocity Profile From Atmospheric Turbulence Studies","authors":"Richard Adansi, Jose Terrazas, Arturo Rodríguez, V. Kotteda, Vinod Kumar, A. Rubio, E. Avalos","doi":"10.1115/fedsm2021-65812","DOIUrl":null,"url":null,"abstract":"\n Atmospheric Turbulence poses a challenge to land-based observatories operated by the United States Air Force (USAF) tasked with space situational awareness. By developing new methods for quantifying Turbulence, we intend to provide increased USAF capability in this domain. Current models for quantifying atmospheric Turbulence include Kolmogorov and Non-Kolmogorov methods. Through the nature of Fourier Transform, sinusoidal function, it is possible to determine the frequency at which velocities occur in a specified vertical distance and eventually determine eddy size in a control volume. First, an ANSYS Computational Fluid Dynamics (CFD) model will be created to simulate atmospheric Turbulence in a defined control volume. The simulation will include a one-dimensional flow over a flat plate. The data we acquired from the simulation were used to derive an equation relating the velocity to the vertical distance (velocity profile). We will perform a regression analysis to fit data from Large-Eddy Simulations (LES) and apply Fourier transformation from a time domain to a frequency domain. The objective is to use Fourier transform analysis to determine eddy size distribution and turbulent cascade dissipation in a control volume by analyzing the frequency of velocities. By calculating such eddy size distribution, we may quantify Turbulence in said control volume and compare results with the traditional Kolmogorov method.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric Turbulence poses a challenge to land-based observatories operated by the United States Air Force (USAF) tasked with space situational awareness. By developing new methods for quantifying Turbulence, we intend to provide increased USAF capability in this domain. Current models for quantifying atmospheric Turbulence include Kolmogorov and Non-Kolmogorov methods. Through the nature of Fourier Transform, sinusoidal function, it is possible to determine the frequency at which velocities occur in a specified vertical distance and eventually determine eddy size in a control volume. First, an ANSYS Computational Fluid Dynamics (CFD) model will be created to simulate atmospheric Turbulence in a defined control volume. The simulation will include a one-dimensional flow over a flat plate. The data we acquired from the simulation were used to derive an equation relating the velocity to the vertical distance (velocity profile). We will perform a regression analysis to fit data from Large-Eddy Simulations (LES) and apply Fourier transformation from a time domain to a frequency domain. The objective is to use Fourier transform analysis to determine eddy size distribution and turbulent cascade dissipation in a control volume by analyzing the frequency of velocities. By calculating such eddy size distribution, we may quantify Turbulence in said control volume and compare results with the traditional Kolmogorov method.
对大气湍流研究的速度剖面进行傅里叶变换
大气湍流对美国空军(USAF)负责空间态势感知的陆基天文台构成了挑战。通过开发量化湍流的新方法,我们打算提高美国空军在这一领域的能力。目前用于量化大气湍流的模型包括Kolmogorov方法和Non-Kolmogorov方法。通过傅里叶变换,正弦函数的性质,可以确定速度在特定垂直距离内发生的频率,并最终确定控制体积内的涡流大小。首先,将创建一个ANSYS计算流体动力学(CFD)模型来模拟一个定义的控制体积内的大气湍流。模拟将包括平板上的一维流动。我们从模拟中获得的数据用于推导速度与垂直距离(速度剖面)的关系方程。我们将进行回归分析以拟合大涡模拟(LES)的数据,并将傅里叶变换从时域应用到频域。目的是利用傅里叶变换分析,通过分析速度频率来确定控制体积内的涡大小分布和湍流叶栅耗散。通过计算这样的涡流尺寸分布,我们可以量化所述控制体积中的湍流,并将结果与传统的Kolmogorov方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信