R. Heydari, M. Golsorkhi, M. Savaghebi, T. Dragičević, F. Blaabjerg
{"title":"Communication-Free Secondary Frequency and Voltage Control of VSC-Based Microgrids: A High-Bandwidth Approach","authors":"R. Heydari, M. Golsorkhi, M. Savaghebi, T. Dragičević, F. Blaabjerg","doi":"10.23919/EPE20ECCEEurope43536.2020.9215874","DOIUrl":null,"url":null,"abstract":"In this paper, a decentralized secondary control strategy for microgrids, with fast dynamic response is proposed. This high bandwidth approach is realized by applying a finite control set, model predictive control (FCS-MPC) at the primary control level of the voltage source converters (VSCs) control. At the upper control level, a novel decentralized secondary control structure is proposed to regulate the islanded microgrid voltage and frequency subsequent to load change, with no need of any communication infrastructure. The proposed control strategy, restores the microgrid frequency and voltage to the nominal value while maintaining accurate power-sharing of the droop mechanism. Experimental results are also provided to verify the effectiveness of the proposed approach.","PeriodicalId":241752,"journal":{"name":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a decentralized secondary control strategy for microgrids, with fast dynamic response is proposed. This high bandwidth approach is realized by applying a finite control set, model predictive control (FCS-MPC) at the primary control level of the voltage source converters (VSCs) control. At the upper control level, a novel decentralized secondary control structure is proposed to regulate the islanded microgrid voltage and frequency subsequent to load change, with no need of any communication infrastructure. The proposed control strategy, restores the microgrid frequency and voltage to the nominal value while maintaining accurate power-sharing of the droop mechanism. Experimental results are also provided to verify the effectiveness of the proposed approach.