Machine Learning on Camera Images for Fast mmWave Beamforming

Batool Salehi, M. Belgiovine, Saray Sanchez, Jennifer G. Dy, Stratis Ioannidis, K. Chowdhury
{"title":"Machine Learning on Camera Images for Fast mmWave Beamforming","authors":"Batool Salehi, M. Belgiovine, Saray Sanchez, Jennifer G. Dy, Stratis Ioannidis, K. Chowdhury","doi":"10.1109/MASS50613.2020.00049","DOIUrl":null,"url":null,"abstract":"Perfect alignment in chosen beam sectors at both transmit- and receive-nodes is required for beamforming in mmWave bands. Current 802.11ad WiFi and emerging 5G cellular standards spend up to several milliseconds exploring different sector combinations to identify the beam pair with the highest SNR. In this paper, we propose a machine learning (ML) approach with two sequential convolutional neural networks (CNN) that uses out-of-band information, in the form of camera images, to (i) rapidly identify the locations of the transmitter and receiver nodes, and then (ii) return the optimal beam pair. We experimentally validate this intriguing concept for indoor settings using the NI 60GHz mmwave transceiver. Our results reveal that our ML approach reduces beamforming related exploration time by 93% under different ambient lighting conditions, with an error of less than 1% compared to the time-intensive deterministic method defined by the current standards.","PeriodicalId":105795,"journal":{"name":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS50613.2020.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Perfect alignment in chosen beam sectors at both transmit- and receive-nodes is required for beamforming in mmWave bands. Current 802.11ad WiFi and emerging 5G cellular standards spend up to several milliseconds exploring different sector combinations to identify the beam pair with the highest SNR. In this paper, we propose a machine learning (ML) approach with two sequential convolutional neural networks (CNN) that uses out-of-band information, in the form of camera images, to (i) rapidly identify the locations of the transmitter and receiver nodes, and then (ii) return the optimal beam pair. We experimentally validate this intriguing concept for indoor settings using the NI 60GHz mmwave transceiver. Our results reveal that our ML approach reduces beamforming related exploration time by 93% under different ambient lighting conditions, with an error of less than 1% compared to the time-intensive deterministic method defined by the current standards.
用于快速毫米波波束形成的相机图像机器学习
在毫米波波段中,波束形成需要在发射和接收节点的选定波束扇区中进行完美对齐。目前的802.11ad WiFi和新兴的5G蜂窝标准需要花费几毫秒的时间来探索不同的扇区组合,以确定具有最高信噪比的波束对。在本文中,我们提出了一种使用两个顺序卷积神经网络(CNN)的机器学习(ML)方法,该方法使用带外信息(以相机图像的形式)来(i)快速识别发射器和接收器节点的位置,然后(ii)返回最优波束对。我们使用NI 60GHz毫米波收发器在室内环境中实验验证了这一有趣的概念。我们的研究结果表明,在不同的环境光照条件下,我们的ML方法将波束形成相关的探测时间减少了93%,与当前标准定义的时间密集型确定性方法相比,误差小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信