Impact of tuning on bad data detection of PMU measurements

L. Zhang, A. Abur
{"title":"Impact of tuning on bad data detection of PMU measurements","authors":"L. Zhang, A. Abur","doi":"10.1109/ISGT-ASIA.2012.6303132","DOIUrl":null,"url":null,"abstract":"Bad measurements are usually detected and identified by normalized measurement residual test through state estimators. This function relies on the accurate measurement weight assigned according to historical data. Since such information may not be available for new meters such as phasor measurement units (PMUs), a weight tuning algorithm for PMUs has been developed in a previous work. This paper investigates impact of the tuning algorithm on bad data detection of PMU measurements. It proposes a systematic method to improve the robustness of error detection and identification for PMU measurements. Simulations in IEEE 14-bus system are used to illustrate the benefits of suggested approach.","PeriodicalId":330758,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-ASIA.2012.6303132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Bad measurements are usually detected and identified by normalized measurement residual test through state estimators. This function relies on the accurate measurement weight assigned according to historical data. Since such information may not be available for new meters such as phasor measurement units (PMUs), a weight tuning algorithm for PMUs has been developed in a previous work. This paper investigates impact of the tuning algorithm on bad data detection of PMU measurements. It proposes a systematic method to improve the robustness of error detection and identification for PMU measurements. Simulations in IEEE 14-bus system are used to illustrate the benefits of suggested approach.
调优对PMU测量中坏数据检测的影响
不良测量通常通过状态估计器进行归一化测量残差检验来检测和识别。此功能依赖于根据历史数据分配的精确测量权重。由于这些信息可能无法用于新的仪表,如相量测量单元(pmu),因此在以前的工作中开发了pmu的权重调谐算法。本文研究了调优算法对PMU测量中不良数据检测的影响。提出了一种系统的方法来提高PMU测量误差检测和识别的鲁棒性。用IEEE 14总线系统的仿真说明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信