Algorithmic Advances for the Adjacency Spectral Embedding

Marcelo Fiori, Bernardo Marenco, Federico Larroca, P. Bermolen, G. Mateos
{"title":"Algorithmic Advances for the Adjacency Spectral Embedding","authors":"Marcelo Fiori, Bernardo Marenco, Federico Larroca, P. Bermolen, G. Mateos","doi":"10.23919/eusipco55093.2022.9909610","DOIUrl":null,"url":null,"abstract":"The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.
邻接谱嵌入算法研究进展
随机点积图(RDPG)是一种流行的关系数据生成图模型。RDPGs假设每个节点存在潜在位置,并通过相应潜在向量的内积指定边缘形成概率。从观察到的图中估计这些潜在位置的嵌入任务通常被视为一个非凸矩阵分解问题。主要的邻接谱嵌入提供了通过邻接矩阵的特征分解获得的近似解,它具有可靠的统计保证,但计算量大,并且是正式解决代理问题。在本文中,我们介绍了最近的非凸优化进展,并证明了它们对RDPG推理的影响。我们开发了一阶梯度下降方法来更好地解决原始优化问题,并以有机的方式适应更广泛的网络嵌入应用。所得到的图表示学习框架的有效性在合成数据和实际数据上都得到了验证。我们展示了算法具有可扩展性,对缺失的网络数据具有鲁棒性,并且当以流方式获取图形时,可以随着时间的推移跟踪潜在位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信