Active contours in optical flow fields for image sequence segmentation

T. Sørensen, K. O. Noe, Christian P. V. Christoffersen, Martin Kristiansen, K. Mouridsen, O. Østerby, L. Brix
{"title":"Active contours in optical flow fields for image sequence segmentation","authors":"T. Sørensen, K. O. Noe, Christian P. V. Christoffersen, Martin Kristiansen, K. Mouridsen, O. Østerby, L. Brix","doi":"10.1109/ISBI.2010.5490136","DOIUrl":null,"url":null,"abstract":"Using variational calculus we develop an active contour model to segment an object across a number of image frames in the presence of an optical flow field. We define an energy functional that is locally minimized when the object is tracked across the entire image stack. Unlike classical snakes, image forces and regularization terms are integrated over the full set of images in the proposed model. This results in a new formulation of active contours. The method is demonstrated by segmenting the ascending aorta in a phase-contrast cine MRI dataset. Techniques to compute the required optical flow field and a “one-click” contour initialization step are suggested for this particular modality.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"3 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Using variational calculus we develop an active contour model to segment an object across a number of image frames in the presence of an optical flow field. We define an energy functional that is locally minimized when the object is tracked across the entire image stack. Unlike classical snakes, image forces and regularization terms are integrated over the full set of images in the proposed model. This results in a new formulation of active contours. The method is demonstrated by segmenting the ascending aorta in a phase-contrast cine MRI dataset. Techniques to compute the required optical flow field and a “one-click” contour initialization step are suggested for this particular modality.
用于图像序列分割的光流场主动轮廓
利用变分演算,我们开发了一个主动轮廓模型,以分割一个对象在存在光流场的许多图像帧。我们定义了一个能量函数,当对象在整个图像堆栈中被跟踪时,它在局部最小。与经典蛇不同的是,在提出的模型中,图像力和正则化项集成在整个图像集上。这导致了活动轮廓的新公式。通过在相位对比电影MRI数据集中分割升主动脉来证明该方法。对于这种特殊的模态,提出了计算所需光流场和“一键”轮廓初始化步骤的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信