TWO-DIMENSIONAL SPHERES IN THE BOUNDARIES OF STRICTLY PSEUDOCONVEX DOMAINS IN $ \mathbb C^2$

N. Kruzhilin
{"title":"TWO-DIMENSIONAL SPHERES IN THE BOUNDARIES OF STRICTLY PSEUDOCONVEX DOMAINS IN $ \\mathbb C^2$","authors":"N. Kruzhilin","doi":"10.1070/IM1992V039N03ABEH002242","DOIUrl":null,"url":null,"abstract":"It is shown that there exists a Levi-flat surface in with boundary on a given two-dimensional sphere that lies in the boundary of a strictly pseudoconvex domain and is totally real everywhere except at a finite number of elliptic and hyperbolic points.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N03ABEH002242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

It is shown that there exists a Levi-flat surface in with boundary on a given two-dimensional sphere that lies in the boundary of a strictly pseudoconvex domain and is totally real everywhere except at a finite number of elliptic and hyperbolic points.
严格伪凸区域边界上的二维球面
证明了在给定的二维球面上存在一个有边界的列维平面,该曲面位于严格伪凸域的边界上,除有限数量的椭圆点和双曲点外,它在任何地方都是全实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信