Cluster validation in k-Means clustering based on PCA-guided k-Means and procrustean transformation of PC scores

Tomohiro Matsui, Katsuhiro Honda, Chi-Hyon Oh, A. Notsu, H. Ichihashi
{"title":"Cluster validation in k-Means clustering based on PCA-guided k-Means and procrustean transformation of PC scores","authors":"Tomohiro Matsui, Katsuhiro Honda, Chi-Hyon Oh, A. Notsu, H. Ichihashi","doi":"10.1109/FUZZY.2009.5277333","DOIUrl":null,"url":null,"abstract":"PCA-guided k-Means is a technique for analytically estimating a relaxed solution for k-Means clustering, while the derived cluster indicator is a rotated solution and the rotation matrix cannot be explicitly estimated. Then, an approach such as visualization by ordering of samples in connectivity matrices is applied for visually accessing cluster structures. This paper introduces a technique for estimating a rotation matrix by Procrustean transformation of principal component scores in order to select the optimal solution from multiple solutions derived by k-Means, and proposes a cluster validation measure calculating the deviation between k-Means solutions and a re-constructed membership indicator matrix.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

PCA-guided k-Means is a technique for analytically estimating a relaxed solution for k-Means clustering, while the derived cluster indicator is a rotated solution and the rotation matrix cannot be explicitly estimated. Then, an approach such as visualization by ordering of samples in connectivity matrices is applied for visually accessing cluster structures. This paper introduces a technique for estimating a rotation matrix by Procrustean transformation of principal component scores in order to select the optimal solution from multiple solutions derived by k-Means, and proposes a cluster validation measure calculating the deviation between k-Means solutions and a re-constructed membership indicator matrix.
基于pca引导的k-Means和PC分数的procrustean变换的k-Means聚类中的聚类验证
pca引导的k-Means是一种分析估计k-Means聚类松弛解的技术,而导出的聚类指标是一个旋转解,旋转矩阵不能显式估计。然后,采用连通矩阵中样本排序的可视化方法对聚类结构进行可视化访问。本文介绍了一种利用主成分分数的Procrustean变换估计旋转矩阵的技术,以便从k-Means得到的多个解中选择最优解,并提出了一种计算k-Means解与重构的隶属度指标矩阵之间偏差的聚类验证测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信