Aerial Image Segmentation In Urban Environment For Vegetation Monitoring

J. Martins, D. Sant’Ana, J. M. Junior, H. Pistori, W. Gonçalves
{"title":"Aerial Image Segmentation In Urban Environment For Vegetation Monitoring","authors":"J. Martins, D. Sant’Ana, J. M. Junior, H. Pistori, W. Gonçalves","doi":"10.1109/LAGIRS48042.2020.9165618","DOIUrl":null,"url":null,"abstract":"Urban forests are crucial for the population well-being and improvement of the quality of life. For example, they contribute to the rain damping and to the improvement of the local climate. Therefore a correct and accurate mapping of this resource is fundamental for its correct management. We investigated a method that combines machine learning and SLIC superpixel techniques using different Superpixels (k) number to map trees in the metropolitan region of the municipality of Campo Grande-MS, Brazil with aerial orthoimages with GSD (Ground Sample Distance) of 10 cm. The combination of superpixels and machine learning algorithms were checked out with a set of weka classifiers and achieved good results i.e. F-1 %98.2, MCC %88.4 and Accuracy of % 96.8, supporting that this method is efficient when used for urban trees mapping.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Urban forests are crucial for the population well-being and improvement of the quality of life. For example, they contribute to the rain damping and to the improvement of the local climate. Therefore a correct and accurate mapping of this resource is fundamental for its correct management. We investigated a method that combines machine learning and SLIC superpixel techniques using different Superpixels (k) number to map trees in the metropolitan region of the municipality of Campo Grande-MS, Brazil with aerial orthoimages with GSD (Ground Sample Distance) of 10 cm. The combination of superpixels and machine learning algorithms were checked out with a set of weka classifiers and achieved good results i.e. F-1 %98.2, MCC %88.4 and Accuracy of % 96.8, supporting that this method is efficient when used for urban trees mapping.
城市环境航拍图像分割用于植被监测
城市森林对人民的福祉和生活质量的改善至关重要。例如,它们有助于雨水阻尼和改善当地气候。因此,正确和准确地映射该资源是正确管理该资源的基础。我们研究了一种结合机器学习和SLIC超像素技术的方法,使用不同的超像素(k)数,使用GSD(地面样本距离)为10 cm的航空正射像在巴西Campo Grande-MS市的大都市地区绘制树木。使用weka分类器验证了超像素和机器学习算法的组合,并取得了良好的结果,即F-1 % 98.2%, MCC %88.4和准确率% 96.8,支持该方法在用于城市树木映射时是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信