Methods for Handling Spontaneous Health Arabic Queries using unsupervised machine learning

Daoud M. Daoud, S. El-Seoud, Fuad Alhosban, Ali Farhat
{"title":"Methods for Handling Spontaneous Health Arabic Queries using unsupervised machine learning","authors":"Daoud M. Daoud, S. El-Seoud, Fuad Alhosban, Ali Farhat","doi":"10.1109/ICCA56443.2022.10039617","DOIUrl":null,"url":null,"abstract":"The goal of this work is to demonstrate that using mixed sublanguage and linguistic processing techniques, is both essential and possible to create a robust NL-based systems. The merging of accurate language processing with the analysis of the sublanguage will undoubtedly improve the processing's correctness and resilience. As a proof-of-concept, we created an experimental system (HASE) to test this hypothesis. The system is a search system for Arabic documents in the health and medical domain. To study the sublanguage we employed machine learning techniques. The initial corpus consists of 40 thousands unedited queries. HASE is built on top of SOLR with the integration of Arabic linguistic processing Component. Responses are generated using IR approach. Altibby is actively deploying HASE in Jordan (the largest health content). The IR component achieves a 90% f-measure when tested with actual noisy free text.","PeriodicalId":153139,"journal":{"name":"2022 International Conference on Computer and Applications (ICCA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer and Applications (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA56443.2022.10039617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this work is to demonstrate that using mixed sublanguage and linguistic processing techniques, is both essential and possible to create a robust NL-based systems. The merging of accurate language processing with the analysis of the sublanguage will undoubtedly improve the processing's correctness and resilience. As a proof-of-concept, we created an experimental system (HASE) to test this hypothesis. The system is a search system for Arabic documents in the health and medical domain. To study the sublanguage we employed machine learning techniques. The initial corpus consists of 40 thousands unedited queries. HASE is built on top of SOLR with the integration of Arabic linguistic processing Component. Responses are generated using IR approach. Altibby is actively deploying HASE in Jordan (the largest health content). The IR component achieves a 90% f-measure when tested with actual noisy free text.
使用无监督机器学习处理自发运行状况阿拉伯语查询的方法
这项工作的目标是证明使用混合子语言和语言处理技术,对于创建一个健壮的基于自然语言的系统是必要的和可能的。将精确语言处理与子语言分析相结合,无疑将提高处理的正确性和弹性。作为概念验证,我们创建了一个实验系统(HASE)来测试这一假设。该系统是在卫生和医疗领域的阿拉伯语文件的搜索系统。为了研究子语言,我们使用了机器学习技术。初始语料库由4万个未编辑的查询组成。HASE建立在SOLR的基础上,集成了阿拉伯语语言处理组件。响应是使用IR方法生成的。Altibby正在约旦(最大的保健内容)积极部署HASE。当对实际的无噪声文本进行测试时,红外组件达到了90%的f测量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信