Experimental validation of repetitive disturbance estimation and model predictive control for multi UAVs

Kentaro Akiyama, Zhenwei Wang, K. Sekiguchi, K. Nonaka
{"title":"Experimental validation of repetitive disturbance estimation and model predictive control for multi UAVs","authors":"Kentaro Akiyama, Zhenwei Wang, K. Sekiguchi, K. Nonaka","doi":"10.1109/RED-UAS.2015.7440986","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to estimate the disturbance information using repetitive technique based on a disturbance map. The disturbance map is shared among unmanned aerial vehicles (UAVs) during platoon flight. Shared map improves the estimated accuracy of disturbance observer via repetitive technique, referred as repetitive estimation. Using the estimated disturbance information, the disturbance map is updated on real-time. The disturbance information can be referred in model predictive control (MPC) as prior information. As the result, the disturbance influence will be suppressed effectively. The validity of the proposed method is verified via experiments using two UAVs.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7440986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a method to estimate the disturbance information using repetitive technique based on a disturbance map. The disturbance map is shared among unmanned aerial vehicles (UAVs) during platoon flight. Shared map improves the estimated accuracy of disturbance observer via repetitive technique, referred as repetitive estimation. Using the estimated disturbance information, the disturbance map is updated on real-time. The disturbance information can be referred in model predictive control (MPC) as prior information. As the result, the disturbance influence will be suppressed effectively. The validity of the proposed method is verified via experiments using two UAVs.
多无人机重复干扰估计与模型预测控制的实验验证
在本文中,我们提出了一种基于干扰映射的重复技术估计干扰信息的方法。在无人机排飞过程中,扰动图是共享的。共享映射通过重复估计技术提高了扰动观测器的估计精度。利用估计的扰动信息,实时更新扰动映射。在模型预测控制(MPC)中,扰动信息可以作为先验信息。这样可以有效地抑制扰动的影响。通过两架无人机的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信