{"title":"Bayesian Graphical Model Application for Monetary Policy and Macroeconomic Performance in Nigeria","authors":"D. Olayungbo","doi":"10.5772/INTECHOPEN.87994","DOIUrl":null,"url":null,"abstract":"This study applies Bayesian graphical networks (BGN) using Bayesian graphical vector autoregressive (BGVAR) model with efficient Markov chain Monte Carlo (MCMC) Metropolis-Hastings (M-H) sampling algorithm in a dynamic interaction among mone- tary policies and macroeconomic performances in Nigeria for the period of 1986Q1 – 2017Q4. The motivation stems from the instability in the movement of exchange rate, inflation rate and interest rate in Nigeria over the past years as a result of the structure of the economy. In this way, the monetary authority periodically applies the various policy instruments to stabilize the economy using reserve and money supply as at when due. This study adapts VAR and SVAR structure to examine the dynamic interaction among variables of interest, using BN, to provide a better understanding of the monetary policy dynamics and fit the changing structure of the Nigeria ’ s economy as regards the dynamics in her economic structure. Our results show that inflation is the strong predictor of interest rate in Nigeria. A monetary policy of broad inflation targeting is recommended for the country.","PeriodicalId":317166,"journal":{"name":"Bayesian Networks - Advances and Novel Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Networks - Advances and Novel Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.87994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study applies Bayesian graphical networks (BGN) using Bayesian graphical vector autoregressive (BGVAR) model with efficient Markov chain Monte Carlo (MCMC) Metropolis-Hastings (M-H) sampling algorithm in a dynamic interaction among mone- tary policies and macroeconomic performances in Nigeria for the period of 1986Q1 – 2017Q4. The motivation stems from the instability in the movement of exchange rate, inflation rate and interest rate in Nigeria over the past years as a result of the structure of the economy. In this way, the monetary authority periodically applies the various policy instruments to stabilize the economy using reserve and money supply as at when due. This study adapts VAR and SVAR structure to examine the dynamic interaction among variables of interest, using BN, to provide a better understanding of the monetary policy dynamics and fit the changing structure of the Nigeria ’ s economy as regards the dynamics in her economic structure. Our results show that inflation is the strong predictor of interest rate in Nigeria. A monetary policy of broad inflation targeting is recommended for the country.