Xun Li, Vineeth Kashyap, J. Oberg, Mohit Tiwari, Vasanth Ram Rajarathinam, R. Kastner, T. Sherwood, B. Hardekopf, F. Chong
{"title":"Sapper: a language for hardware-level security policy enforcement","authors":"Xun Li, Vineeth Kashyap, J. Oberg, Mohit Tiwari, Vasanth Ram Rajarathinam, R. Kastner, T. Sherwood, B. Hardekopf, F. Chong","doi":"10.1145/2541940.2541947","DOIUrl":null,"url":null,"abstract":"Privacy and integrity are important security concerns. These concerns are addressed by controlling information flow, i.e., restricting how information can flow through a system. Most proposed systems that restrict information flow make the implicit assumption that the hardware used by the system is fully ``correct'' and that the hardware's instruction set accurately describes its behavior in all circumstances. The truth is more complicated: modern hardware designs defy complete verification; many aspects of the timing and ordering of events are left totally unspecified; and implementation bugs present themselves with surprising frequency. In this work we describe Sapper, a novel hardware description language for designing security-critical hardware components. Sapper seeks to address these problems by using static analysis at compile-time to automatically insert dynamic checks in the resulting hardware that provably enforce a given information flow policy at execution time. We present Sapper's design and formal semantics along with a proof sketch of its security. In addition, we have implemented a compiler for Sapper and used it to create a non-trivial secure embedded processor with many modern microarchitectural features. We empirically evaluate the resulting hardware's area and energy overhead and compare them with alternative designs.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117
Abstract
Privacy and integrity are important security concerns. These concerns are addressed by controlling information flow, i.e., restricting how information can flow through a system. Most proposed systems that restrict information flow make the implicit assumption that the hardware used by the system is fully ``correct'' and that the hardware's instruction set accurately describes its behavior in all circumstances. The truth is more complicated: modern hardware designs defy complete verification; many aspects of the timing and ordering of events are left totally unspecified; and implementation bugs present themselves with surprising frequency. In this work we describe Sapper, a novel hardware description language for designing security-critical hardware components. Sapper seeks to address these problems by using static analysis at compile-time to automatically insert dynamic checks in the resulting hardware that provably enforce a given information flow policy at execution time. We present Sapper's design and formal semantics along with a proof sketch of its security. In addition, we have implemented a compiler for Sapper and used it to create a non-trivial secure embedded processor with many modern microarchitectural features. We empirically evaluate the resulting hardware's area and energy overhead and compare them with alternative designs.