Hybrid Intrusion Detection in Information Systems

D. Pierrot, Nouria Harbi, J. Darmont
{"title":"Hybrid Intrusion Detection in Information Systems","authors":"D. Pierrot, Nouria Harbi, J. Darmont","doi":"10.1109/ICISSEC.2016.7885857","DOIUrl":null,"url":null,"abstract":"The expansion and democratization of the digital world coupled with the effect of the Internet globalization, has allowed individuals, countries, states and companies to interconnect and interact at incidence levels never previously imagined. Cybercrime, in turn, is unfortunately one the negative aspects of this rapid global interconnection expansion. We often find malicious individuals and/or groups aiming to undermine the integrity of Information Systems for either financial gain or to serve a cause. Our study investigates and proposes a hybrid data mining methodology in order to detect abnormal behavior that could potentially threaten the security of an Information System, in a simple way that is understandable to all involved parties, whether they are security experts or standard users.","PeriodicalId":420224,"journal":{"name":"2016 International Conference on Information Science and Security (ICISS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Science and Security (ICISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISSEC.2016.7885857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The expansion and democratization of the digital world coupled with the effect of the Internet globalization, has allowed individuals, countries, states and companies to interconnect and interact at incidence levels never previously imagined. Cybercrime, in turn, is unfortunately one the negative aspects of this rapid global interconnection expansion. We often find malicious individuals and/or groups aiming to undermine the integrity of Information Systems for either financial gain or to serve a cause. Our study investigates and proposes a hybrid data mining methodology in order to detect abnormal behavior that could potentially threaten the security of an Information System, in a simple way that is understandable to all involved parties, whether they are security experts or standard users.
信息系统中的混合入侵检测
数字世界的扩张和民主化,加上互联网全球化的影响,使个人、国家、国家和公司能够以前所未有的程度相互联系和互动。网络犯罪,反过来,不幸的是,是这种快速的全球互联扩张的负面影响之一。我们经常发现恶意的个人和/或团体旨在破坏信息系统的完整性,以获得经济利益或为某项事业服务。我们的研究调查并提出了一种混合数据挖掘方法,以便以一种简单的方式检测可能威胁信息系统安全的异常行为,无论他们是安全专家还是标准用户,都可以理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信