Ontology and Reinforcement Learning Based Intelligent Agent Automatic Penetration Test

Kexiang Qian, Daojuan Zhang, Peng Zhang, Zhihong Zhou, Xiuzhen Chen, Shengxiong Duan
{"title":"Ontology and Reinforcement Learning Based Intelligent Agent Automatic Penetration Test","authors":"Kexiang Qian, Daojuan Zhang, Peng Zhang, Zhihong Zhou, Xiuzhen Chen, Shengxiong Duan","doi":"10.1109/ICAICA52286.2021.9497911","DOIUrl":null,"url":null,"abstract":"Penetration testing (PT) is the best method for vulnerabilities assessment and evaluating the security of the system under test, by planning and generating possible attack exploits, consist of a series of complex and time consuming trial-and-error stages. Many automated Pentest tools have made. Current Reinforce Learning (RL) based PT tools can do systematic and regular tests to save human resources. Without the aid of prior knowledge, RL-based penetration is somehow more like brute-force test. In this paper, we propose a novel ontology based BDI-agent RL automatic PT framework. By combining SWRL penetration testing knowledge base and RL in a BDI (belief-desire-intention) agent, the proposed model can make use of the ontology based knowledge base (prior knowledge) to optimize the planning problem in the uncertain and dynamic environment. Finally, the simulation on ASL simulation platform Jason proved the new BDI-agent auto-PT model can improve the accuracy and speed performance.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9497911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Penetration testing (PT) is the best method for vulnerabilities assessment and evaluating the security of the system under test, by planning and generating possible attack exploits, consist of a series of complex and time consuming trial-and-error stages. Many automated Pentest tools have made. Current Reinforce Learning (RL) based PT tools can do systematic and regular tests to save human resources. Without the aid of prior knowledge, RL-based penetration is somehow more like brute-force test. In this paper, we propose a novel ontology based BDI-agent RL automatic PT framework. By combining SWRL penetration testing knowledge base and RL in a BDI (belief-desire-intention) agent, the proposed model can make use of the ontology based knowledge base (prior knowledge) to optimize the planning problem in the uncertain and dynamic environment. Finally, the simulation on ASL simulation platform Jason proved the new BDI-agent auto-PT model can improve the accuracy and speed performance.
基于本体和强化学习的智能体自动渗透测试
渗透测试(PT)是评估漏洞和评估被测系统安全性的最佳方法,它通过计划和生成可能的攻击漏洞,由一系列复杂且耗时的试错阶段组成。许多自动化测试工具已经实现了。目前基于强化学习(RL)的PT工具可以进行系统和定期的测试,从而节省人力资源。如果没有先验知识的帮助,基于强化学习的渗透在某种程度上更像是暴力测试。本文提出了一种新的基于本体的BDI-agent RL自动PT框架。该模型将SWRL渗透测试知识库与BDI(信念-愿望-意图)智能体中的强化学习相结合,利用基于本体的知识库(先验知识)对不确定和动态环境下的规划问题进行优化。最后,在ASL仿真平台Jason上进行了仿真,验证了BDI-agent auto-PT模型可以提高精度和速度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信