Comparison Study on SVD-Based Face Classification

Yong Xu, Ying-nan Zhao
{"title":"Comparison Study on SVD-Based Face Classification","authors":"Yong Xu, Ying-nan Zhao","doi":"10.1109/IIH-MSP.2006.75","DOIUrl":null,"url":null,"abstract":"In this paper, a novel SVD-based method is developed to classify face images. The experimental results show that the novel method outperforms the existing SVD-based face recognition methods. In addition, we investigate the performances on face recognition of singular values, left and right singular vectors generated from SVD and assess the existing SVD-based face recognition methods. It appears that by compared with singular values and singular vectors, SVD-based reconstruction images are more useful in classifying face images. In practice, through the SVD-based image reconstruction process, we may weaken the side effects on face classification of varying imaging conditions and facial expressions.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a novel SVD-based method is developed to classify face images. The experimental results show that the novel method outperforms the existing SVD-based face recognition methods. In addition, we investigate the performances on face recognition of singular values, left and right singular vectors generated from SVD and assess the existing SVD-based face recognition methods. It appears that by compared with singular values and singular vectors, SVD-based reconstruction images are more useful in classifying face images. In practice, through the SVD-based image reconstruction process, we may weaken the side effects on face classification of varying imaging conditions and facial expressions.
基于svd的人脸分类比较研究
本文提出了一种基于奇异值分解的人脸图像分类方法。实验结果表明,该方法优于现有的基于奇异值分解的人脸识别方法。此外,我们还研究了奇异值、左奇异向量和右奇异向量对人脸识别的性能,并评估了现有的基于奇异值分解的人脸识别方法。结果表明,与奇异值和奇异向量相比,基于奇异值分解的重构图像在人脸图像分类中更有用。在实践中,通过基于svd的图像重建过程,我们可以减弱不同成像条件和面部表情对人脸分类的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信