S. Stevanovic, P. Chavanne, O. Braissant, U. Pieles, P. Gruner, R. Schumacher
{"title":"Improvement of Mechanical Properties of 3d Printed Hydroxyapatite Scaffolds by Polymeric Infiltration","authors":"S. Stevanovic, P. Chavanne, O. Braissant, U. Pieles, P. Gruner, R. Schumacher","doi":"10.4172/2090-5025.S1-012","DOIUrl":null,"url":null,"abstract":"Tailor made bioceramic scaffolds in combination with the corresponding surface chemistry and biology is of great importance for a successful implantation and rapid osseo-integration. The present study investigates the fabrication of Hydroxyapatite (HA) scaffolds with defined macro porosity by means of powder based 3D-printing. In order to mime natural bone with its elastic collagen structure, the 3D-printed ceramic structures were post-treated by polymeric infiltration. Compressive Strength analysis (CS) confirmed the positive impact of an elastomeric phase on mechanical properties. 3D-printed HA scaffolds in combination with polymer result in biodegradable scaffolds with promising mechanical properties for potential use in regenerative medicine.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"83 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-5025.S1-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Tailor made bioceramic scaffolds in combination with the corresponding surface chemistry and biology is of great importance for a successful implantation and rapid osseo-integration. The present study investigates the fabrication of Hydroxyapatite (HA) scaffolds with defined macro porosity by means of powder based 3D-printing. In order to mime natural bone with its elastic collagen structure, the 3D-printed ceramic structures were post-treated by polymeric infiltration. Compressive Strength analysis (CS) confirmed the positive impact of an elastomeric phase on mechanical properties. 3D-printed HA scaffolds in combination with polymer result in biodegradable scaffolds with promising mechanical properties for potential use in regenerative medicine.