{"title":"Dynamical phase transitions on nanoscale","authors":"G. Kocsis, F. Márkus","doi":"10.1109/THERMINIC.2016.7749067","DOIUrl":null,"url":null,"abstract":"On nanoscale, many transport characteristics of the matter differ from the macroscopic ones as quantum effects play role in the propagation of charge and heat carriers. Extensive research had been conducted to reveal the distinct transport behaviour for charge carriers, however, novel investigations have shown that heat carriers (i.e. phonons) are also subject to new transport phenomena. In the study, we estimated possible propagation modes for the dual phase lag model proposed by Anderson and Tamma with additional boundary effects on propagation of heat carriers in a nanoscale silicon layer. Furthermore, if the heat conductivity coefficient's dependence of size (via Knudsen-number) is taken into consideration then the A-T model predicts new ballistic transport mode along the well-known diffusive behaviour. We were able to confirm the existence of new transport modes for heat carriers in nanoscale systems theoretically. The results are not only important from a physical perspective but can be a ground for several technical developments where heating and cooling of the material is crucial (e.g. microprocessors).","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
On nanoscale, many transport characteristics of the matter differ from the macroscopic ones as quantum effects play role in the propagation of charge and heat carriers. Extensive research had been conducted to reveal the distinct transport behaviour for charge carriers, however, novel investigations have shown that heat carriers (i.e. phonons) are also subject to new transport phenomena. In the study, we estimated possible propagation modes for the dual phase lag model proposed by Anderson and Tamma with additional boundary effects on propagation of heat carriers in a nanoscale silicon layer. Furthermore, if the heat conductivity coefficient's dependence of size (via Knudsen-number) is taken into consideration then the A-T model predicts new ballistic transport mode along the well-known diffusive behaviour. We were able to confirm the existence of new transport modes for heat carriers in nanoscale systems theoretically. The results are not only important from a physical perspective but can be a ground for several technical developments where heating and cooling of the material is crucial (e.g. microprocessors).